233 resultados para LiNbO3 : Ce : Cu crystals
Resumo:
We report in this paper the spectral characteristics of Er3+ (2 at.%)-activated and Ce3+ (0.3 at.%)-sensitized yttrium aluminium garnet (YAG:Er,Ce) laser crystals grown by the Czochralski technique. The absorption and emission spectra were measured at room temperature. By using absorption spectra and Judd-Ofelt theory the experimental oscillator strengths of the Er3+ transitions in the YAG:Er,Ce crystals were calculated. The energy transfer between the Er3+ and Ce3+ ions is also discussed.
Resumo:
The dependences of the recording properties of LiNbO3:Fe:Mn crystals on an external electric field (applied in the recording or fixing phase of the nonvolatile holographic recording process) are numerically investigated and the optimal conditions for applying an external electric field in this two-step process of nonvolatile holographic recording are discussed in detail. Significant improvement of the photorefractive performance has been found and experimental verifications using a small external electric field are described. Moreover, direct measures relating to the dominant photovoltaic mechanism in the doubly doped LiNbO3 crystals and the unconventional grating-enhanced fixing are revealed by applying an external electric field in the recording and the fixing phases, respectively.
Resumo:
Nanosized Ce1-xCuxOy materials were prepared by complexation-combustion method. The structural characteristics and redox behaviors were investigated using X-ray diffraction (XRD), temperature programmed reduction (H-2-TPR), UV-Vis, and Raman spectroscopies. In XRD patterns, no evidence of CuO diffraction peaks are observed for the Ce1-xCuxOy samples calcinated at 650 degreesC for 5 h, until the Cu/(Ce + Cu) ratio is higher than 0.4. The stepwise decrease of the 2theta value of CeO2 in Ce1-xCuxOy with the increasing of Cu concentration suggests that the CU2+ ions incorporate into the CeO2 lattice to form Ce1-xCuxOy solid solutions for low Cu/(Ce + Cu) ratios (x less than or equal to 0.1). The CuO phase begins to segregate from the solid solutions with the further increasing of Cu/(Ce+Cu) ratio. The Raman mode at 1176 cm(-1) ascribed to the enhanced defects appears for CeO2 and the Ce0.9Cu0.1Oy solid solution. Compared with CeO2 alone, the Raman mode of cubic CeO2 shifts from 462 to 443 cm(-1) for the Ce0.9Cu0.1Oy solid solution. The H-2 consumption of the fresh Ce0.95Cu0.05Oy is 1.65 times higher than that needed to reduce CuO to Cu, and it increases to 2.4 after a reoxidation of the partially reduced Ce0.95Cu0.05Oy at 300 degreesC, which indicates that the CeO2 phase is also extensively reduced. Compared with the high Cu/(Ce+Cu) ratio sample Ce0.7Cu0.3Oy, the Ce0.9Cu0.1Oy solid solution shows high and stable redox property even after different reoxidation temperatures. When the reoxidation temperature exceeds 200 degreesC, the a peak (similar to170 degreesC) ascribed to the reduction of surface oxygen disappears, and the P peak (similar to190 degreesC) ascribed to the reduction of Cu2+ species and the partial reduction of bulk CeO2 shifts to higher temperatures with the H-2 consumption 1.16 times higher than that for fresh sample. The result demonstrates that the redox property of the CeO2 is Significantly improved by forming the Ce1-xCuxOy solid solutions.
Resumo:
We report experimental and theoretical studies of nonvolatile photorefractive holographic recording in LiNbO3:Cu:Ce crystals with two illumination schemes: (1) UV light for sensitization and a red interfering pattern for recording and (2) blue light for sensitization and a red pattern for recording. The results show that the oxidized LiNbO3:Cu:Ce crystals can provide high, persistent refractive-index modulation with weak lightinduced scattering. The optimal working conditions and the prescription for doping and oxidation-reduction processing that yields the maximum refractive-index modulation are discussed. (C) 2000 Optical Society of America OCIS codes: 050.7330, 190.5330, 090.2900.
Resumo:
采用紫外光作记录光在Ce:Mn:LiNbO3晶体中实现非挥发全息记录,灵敏度可达0.0803cm/J,衍射效率(固定)为5.07%,比采用红光为记录光,紫外光为敏化光的非挥发双中心记录方案均提高了50多倍。分析表明,采用紫外光作为记录光,深能级电子被激发比例极大提高,参与光折变过程的电子平均运动周期变短.提高了衍射效率和灵敏度;深浅能级电子光栅的同相位,使得固定空间电荷场变强。文中还研究了退火对记录性能的影响。
Resumo:
We have studied theoretically the inherent mechanisms of nonvolatile holographic storage in doubly doped LiNbO3 crystals. The photochromic effect of doubly doped LiNbO3 crystals is discussed, and the criterion for this effect is obtained through the photochromism-bleach factor a = S(21)gamma(1)/S(11)gamma(2) that we define. The two-center recording and fixing processes are analytically discussed with extended Kukhtarev equations, and analytical expressions for recorded and fixed steady-state space-charge fields as well as temporal behavior during the fixing process are obtained. The effects of microphysical quantities, the macrophotochromic effect on fixing efficiency, and recorded and fixed steady-state space-charge fields, are discussed analytically and numerically. (C) 2002 Optical Society of America.
Resumo:
The high-resolution emission spectra of KMgF3 : Eu and KMgF3 : Eu-X(X = Ce, Cr, Gd, Cu) single crystals were measured at 300 and 77 K. The vibronic side bands of Eu2+ were characterized and an assignment of the normal mode frequencies to particular vibrations has been made. The correlation between the vibronic frequencies of Eu2+ and the site substitution of other co-dopcd ions was first found. The relationship between vibronic intensity of Eu2+ and other doped ions concentration showed that Cr3+, Gd3+ ions competed K+ sites with Eu2+ ions. Ce3+ and Eu3+ occurred the electron transference. The introduction of Cu+ made for Eu2+ substuting for K+ sites.
Resumo:
The formation of the non-uniformity of the non-volatile volume grating in doubly doped LiNbO3 crystals is studied in detail. We find that the non-uniformity of the grating is mainly caused by strong ultraviolet light absorption, and the average saturation space-charge field is small and the diffraction efficiency is low as a result of the non-uniformity of the grating. In order to optimize the uniformity of the grating, we propose the recording scheme by using two sensitizing beams simultaneously from the two opposite sides of the crystals. Theoretical simulations and experimental verifications are performed. Results show that the well uniformed grating with high diffraction efficiency can be obtained by using this optimization scheme. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We propose a united theory that describes the two-center recording system by taking scattering noise into account. The temporal evolution of the signal-to-noise ratio in doubly doped photorefractive crystals is described based on jointly solving material equations and coupled-wave equations with the fourth-order Runge-Kutta method. Roles of microcosmic optical parameters of dopants on the signal-to-noise ratio are discussed in detail. The theoretical results can confirm and predict experimental results. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
The influence of the recording conditions, including the widths of the recording beams, the width ratio of the recording beams, and the recording angles, on the properties of crossed-beam photorefractive gratings in doubly doped LiNbO3 crystals is studied. A theoretical model that combines the band transport model with two-dimensional coupled-wave theory is proposed. The numerical calculations of the space-charge field, the intensity profiles of the diffracted beam, and the diffraction efficiency are presented. (C) 2006 Optical Society of America.
Resumo:
Based on a modified coupled wave theory of Kogelnik, we have studied the diffraction of an ultrashort pulsed beam with an arbitrary polarization state from a volume holographic grating in photorefractive LiNbO3 crystals. The results indicate that the diffracted intensity distributions in the spectral and temporal domains and the diffraction efficiency of the grating are both changed by the polarization state and spectral bandwidth of the input pulsed beam. A method is given of choosing the grating parameters and input conditions to obtain a large variation range of the spectral bandwidth of the diffracted pulsed beam with an appropriate diffraction efficiency. Our study presents a possibility of using a volume holographic grating recorded in anisotropic materials to shape a broadband ultrashort pulsed beam by modulating its polarization state.
Resumo:
Ce doped Bi12SiO20 single crystals were grown either on board of the Chinese Spacecraft-Shenzhou No.3 (SZ-3) or on the ground at the same conditions with the exception of microgravity. The surface morphology of crystals clearly showed significant differences between the space- and ground-grown portions. The space- and ground-grown crystals have been measured by X-ray rocking curve, Cc concentration distribution in growth direction, dislocation density, absorption spectrums. These results show that the compositional homogeneity and structural perfection of Ce doped crystal grown in space are obviously improved.