43 resultados para Lesser Himalaya
Resumo:
土壤是人类赖以生存的自然环境和农业生产的重要资源,目前土壤受到干旱和盐胁迫的危害越来越严重。杨树具有适应性强、生长快和丰产等特性,本论文以青杨组杨树为模式植物,研究杨树对土壤干旱和盐胁迫的生态生理及蛋白质组学反应,研究成果可为我国干旱半干旱地区营造人工林、防止沙漠化提供理论依据,也为恢复与重建盐污染地区退化生态系统提供科学指导。主要研究结果如下: 1 青杨不同种对逐步干旱胁迫的响应差异 将来自喜马拉雅山东缘高海拔的康定杨和低海拔的青杨枝条扦插在温室中,用来检测它们对逐步干旱胁迫的响应。研究结果表明来自不同海拔的杨树对逐步干旱胁迫的适应性反应是不一样的。株高、叶片发育、叶片相对含水量、丙二醛、过氧化氢等指标的显著性变化在青杨中比在康定杨中来得早些,而且随着干旱胁迫程度的增加,这些参数的变化越来越明显,尤其是当青杨受到严重干旱胁迫的时候;而可溶性蛋白、可溶性糖、游离脯氨酸、抗氧化酶活力变化在康定杨中来得早一些。与青杨相比,在干旱胁迫下,康定杨仍能保持较好的植株生长和叶片发育;康定杨也能在逐步干旱条件下积累更多的可溶性蛋白、可溶性糖、游离脯氨酸及抗氧化酶活力,但是在丙二醛和过氧化氢含量方面增加的更少些。而且,我们的研究结果表明高海拔的康定杨有更强的耐干旱能力,杨树对干旱胁迫的适应能力与干旱发生的速度、强度、持续时间及两种杨树的海拔有关。 2 干旱胁迫下青杨不同种的蛋白质组学分析 来自青杨和康定杨雌株的枝条扦插在温室中,用来研究它们对干旱胁迫的蛋白质组学反应。采用TCA-丙酮/酚提取法提取总蛋白,并进行双向电泳分析。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。在青杨中有58 个蛋白在干旱处理后发生显著变化,其中22 个蛋白通过肽指纹图谱成功鉴定。康定杨中有69 个蛋白的表达量发生了显著变化,其中有25 个蛋白通过肽指纹图谱成功鉴定。这些被鉴定的蛋白主要参与了光合作用、氧化还原平衡、信号传导、能量代谢、蛋白质合成等过程。尽管被鉴定的蛋白只占叶片总蛋白的很少一部分,但这些被鉴定的干旱响应蛋白可能对维持植株内部平衡方面有重要作用。 3 青杨的盐胁迫响应 青杨植株分别用 0、50 和100 mM NaCl 溶液进行处理。叶片相对含水量、叶绿素a、b 含量、CO2 同化速率和气孔导度的降低表明叶绿体受到了盐胁迫的影响。过氧化氢、丙二醛含量及电导率的升高表明细胞受到了伤害。可溶性糖、游离脯氨酸含量及抗氧化酶含量的上升增加了植株耐盐胁迫的能力。在每个处理的重复图像中都能检测到1,000 个以上的蛋白点。其中有38 个盐响应蛋白被成功鉴定,有16 个蛋白(点4、10、11、14、15、21、24、26、27、28、33、34、35、36、37 和38)出现在盐胁迫的植株中;3 个蛋白(点10、11 和35)只出现在重度盐胁迫处理中;而1 个蛋白(点1)只出现在对照处理中。2 个蛋白(点1 和2)表达量下降,其余蛋白点表达量都增加。被鉴定的蛋白一部分参与了生理生化反应,而另一部分则在信号传导、蛋白质合成等方面有重要作用。盐胁迫下的生理生化变化及蛋白质组学的联合研究有利于青杨对盐胁迫的适应性分析。 Soil is the indispensable environment for human survival and important resource for agriculture development. Nowadays soil is threatened by drought stress and salt stress. Poplars (Populus spp.) possess some characters such as strong acclimilation, fast growth and great production of biomass. In this study, different species of Populus section Tacamahaca spach were used as model plants to investigate the ecophysiological and proteomic responses to drought stress and salt stress. Our results can provide theoretical evidence for the afforestation and prevention of desertification in the arid and semi-arid areas, and also can supply scientific direction for the reconstruction and rehalibitation of ecosystems contaminated by salinity. The results are as follows: 1 Adaptive responses to progressive drought stress in two contrasting poplar species originating from different altitudes Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehd., originating from high and low altitudes in the eastern Himalaya, respectively, were examined during one growing season in a greenhouse to determine the effects of progressive drought stress. The results manifested that the adaptive responses to progressive drought stress were different in these two species from different altitudes. Significant changes in height increment, leaf development, relative water content (RWC), malondialdehyde (MDA) and hydrogen peroxide (H2O2) appeared earlier in P. cathayana than in P. kangdingensis, whereas changes in soluble protein, soluble sugar, free proline and antioxidant enzymes appeared earlier in P. kangdingensis. In addition, changes in these parameters became more and more significant when the drought stress progressed, especially under severe drought stress in P. cathayana. Compared with P. cathayana, P. kangdingensis was able to maintain a superior height increase and leaf development under drought stress. Also, P. kangdingensis possessed greater increments in soluble protein, soluble sugar, free proline and antioxidant enzymes, but lower increments in MDA and H2O2 than did P. cathayana when the cuttings were exposed to progressive drought stress. Our results suggest that P. kangdingensis originating from the high altitude has a better drought tolerance than does P. cathayana originating from the low altitude. Furthermore, this study manifested that acclimation to drought stress are related the rapidity, severity, duration of the drought event and the altitude of two contrasting species. 2 Proteomic responses to drought stress in two contrasting poplar species originating from different altitudes The cuttings from a female clone of P. kangdingensis and P. cathayana were used to determine proteomic response to drought stress, respectively. Total proteins of the leaves were extracted by a combination of TCA-acetone and phenol, and separated by two-dimensional gel electrophoresis. More than 1,000 protein spots were reproducibly detected on each gel. 58 differentially expressed spots were detected under drought stress in P. cathayana and 22 drought-responsive proteins were identified by peptide mass fingerprint. 69 differentially expressed spots were detected under drought stress in P. kangdingensiss and 25 drought-responsive proteins were identified by peptide mass fingerprint. The identified proteins are involved in several processes, i.e., signal transduction, protein processing, redox homeostasis, CO2 fixation and energy metabolism. Although the proteins identified in this investigation represent only a very small part of the poplar leaf proteins, some of the novel drought-responsive proteins identified here may be involved in the establishment of homeostasis in response to drought stress in the woody plants. 3 Responses to salt stress in P. cathayana Cuttings from a female clone of P. cathayana were treated by Hoagland’s solution: 0, 50, 100 mM NaCl, respectively. Salinity significantly decreased the relative water content of leaves, the contents of chlorophyll a and chlorophyll b, CO2 assimilation rate (A) and stomatal conductance (gs) in both salt stress treatments,which suggested the chloroplast was affected by salt stress. The observed increases of H2O2 and malondialdehyde contents and electrolyte leakage suggested that salinity caused cellular damage, whereas the increases in compatible solutes and in the activities of antioxidant enzymes enhanced the salt tolerance. More than 1,000 protein spots were reproducibly detected on each gel, and 38 salt-responsive proteins were successfully identified by peptide mass fingerprint (PMF). 16 spots (spot 4, 10, 11, 14, 15, 21, 24, 26, 27, 28, 33, 34, 35, 36, 37 and 38) absent in the control sample were induced by the salt treatment, and three spots (spot 10,11 and 35) were present only in the severely salt-stressed treatment. The %vol of the differentially expressed proteins generally increased with progressing salt stress, except for the decreased %vol of two proteins (spot 1 and 2) under salt stress and the presence of spot 1 only in the control sample. Some of the novel salt-responsive proteins identified here may be involved in physiological, biochemical response to salt stress in P. cathayana, the other identified proteins play a role in numerous cellular functions, including signal transduction and protein processing. An integrated physiological, biochemical and proteomic approach was used here to systematically investigate salt acclimation in poplar.
Resumo:
Freshly prepared Fe and Al hydrous oxide gels and the amorphous product of heating gibbsite selectively adsorbed traces of Ca and Sr from solutions containing a large excess (∼1M) of NaNO3. The fraction of the added Ca (Sr) adsorbed depended principally on the suspension pH, the amount of solid present, and to a lesser extent on the NaNO3 concentration. Significant Ca and Sr adsorption occurred on the Fe and Al gels, and heated gibbsite, at pH values below the points of zero charge (8.1, 9.4, and 8.3±0.1, respectively), indicating specific adsorption. The pH (± 0.10) at which 50% of the Ca was adsorbed (pH50) occurred at pH 7.15 for the Fe gel (0.093M Fe), 8.35 for the Al gel (0.093M Al), and 6.70 for the heated gibbsite (0.181M Al); for Sr, the pH50 values were 7.10, 9.00, and 6.45, respectively. For the Fe gel and heated gibbsite, an empirical model based on the law of mass action described the pH dependence of adsorption reasonably well and suggested that for each Ca or Sr fraction adsorbed, approximately one proton was released. Failure of the Al gel to fit this model may have resulted from its rapid aging.
Resumo:
Fractionated crystallization behavior of dispersed PA6 phase in PP/PA6 blends compatibilized with PP-g-MAH was investigated by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), polarized light microscopy (PLM), and wide-angle X-ray diffraction (WAXD) in this work. The lack of usual active heterogeneities in the dispersed droplet was the key factor for the fractionated crystallization of PA6. The crystals formed with less efficient nuclei might contain more defects in the crystal structures than those crystallized with the usual active nuclei. The lower the crystallization temperature, the lesser the perfection of the crystals and the lower crystallinity would be. The fractionated crystallization of PP droplets encapsulated by PA6 domains was also observed. The effect of existing PP-g-MAH-g-PA6 copolymer located at the interface on the fractionated crystallization could not be detected in this work.
Resumo:
We here reconstruct the past change of the East Asian monsoon since 20 Ma using samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea based On a multi-proxy approach including a monomineralic quartz isolation procedure, identification of clay minerals by X-ray Diffraction (XRD) and grain-size analysis of isolated terrigenous materials. Terrigenous supply to ODP Site 1146 was dominated by changes in the strength of multiple sources and transport processes. Grain-size data modeled by an end-member modeling algorithm indicate that eolian dust from the and Asian inland and fluvial input have contributed on average 20% and 80% of total terrigenous material to ODP Site 1146, respectively. Specifically, about 40-53% of the total (quartz+feldspar) and only 6-11% of the total clay is related to eolian supply at the study site. Detailed analysis of the sedimentary environment, and clay minerals combined with previous studies shows that smectite originates mainly from Luzon, kaolinite from the Pearl River and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The proportion and mass accumulation rate (MAR) of the coarsest end-member EM1 (interpreted as eolian dust), ratios of (illite+chlorite)/smectite, (quartz+feldspar)% and mean grain-size of terrigenous materials at ODP Site 1146 were adopted as proxies for East Asian monsoon evolution. The consistent variation of these independent proxies since 20 Ma shows three profound shifts in the intensity of East Asian winter monsoon relative to summer monsoon, as well as aridity of the Asian continent, occurred at similar to 15 Ma, similar to 8 Ma and the youngest at about 3 Ma. In comparison, the summer monsoon intensified contemporaneously with the winter monsoon at 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at similar to 15 Ma, 8 Ma and 3 Ma. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
273 samples from Ocean Drilling Program (ODP) Site 1146 in the northern South China Sea (SCS) were analyzed for grain-size distributions using grain-size class vs. standard deviation method and end-member modeling algorithm (EMMA) in order to investigate the evolution of the East Asian mon-soon since about 20 Ma. 10-19 mu m/1.3-2.4 mu m, the ratio of two grain-size populations with the highest variability through time was used to indicate East Asian winter monsoon intensity relative to summer monsoon. The mass accumulation rate of the coarsest end member EM1 (eolian), resulting from EMMA, can be used as a proxy of winter monsoon strength and Asian inland aridity, and the ratio of EM1/(EM2+EM3) as a proxy of winter monsoon intensity relative to summer monsoon. The combined proxies show that a profound enhancement of East Asian winter monsoon strength and winter monsoon intensity relative to summer monsoon occurred at about 8 Ma, and it is possible that the summer monsoon simultaneously intensified with winter monsoon at 3 Ma. Our results are well consistent with the previous studies in loess, eolian deposion in the Pacifc, radiolarians and planktonic foraminifera in the SCS. The phased uplift of the Himalaya-Tibetan Plateau may have played a significant role in strengthening the Asian monsoon at 8 Ma and 3 Ma.
Resumo:
Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows that three profound shifts of the East Asian winter monsoon intensity, and aridity in the Asian inland and the intensity of winter monsoon relative to summer monsoon, occurred at about 15 Ma, 8 Ma, and the younger at about 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at 15 Ma, 8 Ma, and 3 Ma.
Resumo:
Three F-1 families of the bay scallop, Argopecten irradians, were produced from one, two and 10 individuals. The genetic changes in these populations, which suffered recent and different levels of bottleneck, were analysed using amplified fragment length polymorphism (AFLP) techniques. In the parental stock, a total of 330 bands were detected using seven AFLP primer pairs, and 70% of the loci were polymorphic. All F-1 groups had a significantly lower proportion of polymorphic loci when compared with the initial stock, and loss of the rare loci and reduction in heterozygosity both occurred. The progeny of the larger population (i.e., N=10) exhibited a lesser amount of genetic differentiation compared with the progeny from N=2, which showed lesser differentiation than progeny from N=1. The effective population sizes (N-e) in N=1, 2 and 10 were estimated as 1.50, 1.61 and 2.49. Based on regression analysis, we recommend that at least 340 individuals be used in hatchery populations to maintain genetic variation.
Resumo:
With the development of petroleum exploration in Gaoyou Depression, both old and new areas have been the active exploration targets, so the study of petroleum accumulation is significant to the petroleum exploration in the study area and the integrated oil and gas accumulation theory. Based on hydrocarbon accumulation theory and systematical research methods and combined with the structural characteristics of Gaoyou Depression, Chenbao and East of Chenbao were selected as the study areas in this dissertation, oil and gas migration pathways, accumulation periods, as well as accumulation models were studied, and favorable exploration targets were proposed. There develop three sets source rocks, which are Tai-2 Member, Fu-2 Member and Fu-4 Member respectively. Tai-2 Member is the predominant source rock in the eastern part. Fu-2 Member mainly occurs in the northern slope, while Fu-4 Member develops in the deep depression. In the study area, oil mainly comes from Fu-2 Member of Liuwushe subsag. The lower limit of TOC is 0.4%, and active source rock mostly distributed in the south fault-step zone. The source rock in Liuwushe subsag began to generate hydrocarbon in the late of Dainan depositional stage and the threshold was 2300m. The macro and micro characteristics of reservoirs and the reservoir heterogeneity characteristics of the Fu-1 Member were studied systematicly. The results show that Fu-1 Member, which has better reservoir properties, are medium porosity-medium permeability reservoir. The reservoir permeability has good correlation with porosity connectivity. The reservoirs have strong dissolution, pores are mainly thin to medium throat, and throat radii are distributed concentratedly, the sorting is good and pore structures are homogeneous. Sandstone reservoirs whether in the plan view, interlayer or in layers have a certain degree of heterogeneity, in particular, the heterogeneity in layers directly affect and control the oil and gas migration and accumulation. By analyzing the lithology correlation of the fault walls, shale smear, cross section stress, the configuration of fracture active periods and hydrocarbon generation and expulsion periods and fuzzy comprehensive evaluation, the main faults sealing were evaluated. The results show that the faults in Chenbao and East of Chenbao had poor sealing properties in Sanduo period and could be used as the migration pathways at that time. After Sanduo period, the tectonic stress fields in the area changed largely, and, consequently, the fault properties converted from tensional shear to compressive shear, the faults changed progressively from close to open, so the faults sealing became better and were conducive to the preservation of oil and gas reservoirs. According to the seismic event suspension modes and profile configurations above and under the unconformities, combined with tectonic evolutions of the study areas, the unconformity types can be classified into truncation unconformity, overlapped unconformity and parallel unconformity and the distribution characteristics of unconformities in the plan view was also studied. The unconformity structure was divided into basal conglomerate, weathered clay and semi-weathered layer vertically in the study area and this kind of structure make unconformities to be effective oil and gas migration pathways and is significant to hydrocarbon accumulation in a parts of areas. With the analyses of typical oil and gas reservoirs in the study area, combined with the research results of pathway systems, hydrocarbon accumulation models were established and the oil and gas accumulation laws in Chenbao and East of Chenbao analyzed. The oil and gas came from Liuwushe subsag and Liuliushe subsag. The oil and gas from Liuwushe subsag mainly migrated from the structural high parts into the fault-step zone along strata in northeast direction, a part of them migrated upward into the fault-step zone and the Wubao low uplift along Wu-1 Fault in northeast direction. The oil and gas from Liuliushe subsag mainly migrated into the upper reservoirs through Wu-2 fault, and lesser oil and gas migrated into the fault-step zone because of the controls of cross-section orientation, depression center and the hydrocarbon formation tendency. The favorable exploration targets in Chenbao and East of Chenbao have been concluded: the southern fault-step zone is a favorable oil and gas accumulation zone of Liuwushe subsag, and they are fault block reservoirs where fault acted as the barriers, the main target intervals are Fu-1 Member and Fu-3 Member in palaeocene; Oil and gas in the middle and northern fault-step zone mainly laterally migrated from the south areas, and the main target interval is Fu-3 Member in palaeocene; Fu-1 Member and the reserviors above the Wubao subsag are still the focuses in future explorations. The results of this study have important guiding significance for the future oil and gas exploration.
Resumo:
The most prominent tectonic and environmental events during the Cenozoic in Asia are the uplift of the Himalaya-Tibetan plateau, aridification in the Asian interior, and onset of the Asian monsoons. These caused more humid conditions in southeastern China and the formation of inland deserts in northwestern China. The 22 Ma eolian deposits in northern China provide an excellent terrestrial record relative to the above environmental events. Up to date, many studies have focused on the geochemical characters of the late Mio-Pleistocene eolian deposits, however, the geochemical characteristics of the Miocene loess and soils is still much less known. In this study, the elemental and Sr-Nd isotopic compositions of the eolian deposits from the Qinan (from 22.0 to 6.2 Ma) and the Xifeng (from 3.5 Ma until now) loess-soil sections were analyzed to examine the grain size effects on the element concentrations and the implications about the dust origin and climate. The main results are as follows: 1. The contents of Si, Na, Zr and Sr are higher in the coarser fractions while Ti and Nb have the highest contents in the 2-8 μm fractions. Al, Fe, Mg, K, Mn, Rb, Cu, Ga, Zn, V, Cr, Ni, LOI have clear relationships with grain-size, more abundant in the fine fraction while non significant relationship is observed for Y. Based on these features, we suggest that K2O/Al2O3 ratio can be used to address the dust provenance, and that VR (Vogt ratio = (Al2O3+K2O)/(MgO+CaO+Na2O)) can be used as a chemical weathering proxy for the Miocene eolian deposits because of their relative independence on the grain size. Meanwhile, SiO2/Al2O3 molar ratio is a best geochemical indicator of original eolian grain size, as suggested in earlier studies. 2. Analyses on the Sr and Nd isotope composition of the last glacial loess samples (L1) and comparison with the data from the deserts in northern China suggest that that Taklimakan desert is unlikely to be the main source region of the eolian dust. In contrast, these data suggest greater contributions of the Tengger, Badain Jaran and Qaidam deserts to the eolian dust during the last glacial cycle. Since the geochemical compositions (major, trace, REE and Sr, Nd isotope) of loess samples for the past 22 Ma are broadly similar with the samples from L1, these data trend to suggest relatively stable and insignificant changes of dust sources over the past 22 Ma. 3. Chemical weathering is stronger for Miocene paleosol samples than for the Plio-Pleistocene ones, showing warmer/more humid climatic conditions with a stronger summer monsoon in the Miocene. However, chemical weathering is typical of Ca-Na removal stage, suggesting a climate range from semiarid to subhumid conditions. These support the notion about the formation of a semi-arid to semi-humid monsoonal regime by the early Miocene, as is consistent with earlier studies.
Resumo:
Tethyan Himalayan Sequence (THS) is located at the frontier of the India-Asia collision zone, which can preserve critical information about collision. This paper reports detailed petrology, geochemistry, spinels electron microprobe data, and in situ U-Pb ages and Lu-Hf isotopic data on detrital zircons from the late Cretaceous to early Eocene strata in Gyantze and Gamba area, south Tibet that provide important constraints on the early tectonic evolution of the India-Asia collision. In Gyantze, the lithic arkose in Zongzhuo mélange is characterized by, SiO2 =80.4%, Al2O3=8.6%, Na2O=1.6%, K2O=1.1%, LaN/YbN=8.90, and εNd (0) =-10.27. Spinels compositions are characterized by low TiO2 (generally <0.1%) and a Cr number mainly between 70 and 80. The largest population of detrital zircons is within the 73-169Ma range with high εHf (t) and > 500 Ma with complex εHf (t) values. The lithic arkose in Rilang conglomerate is characterized by, SiO2 =56.5%, Al2O3=15.6%, Na2O=4.7%, K2O=0.6%, LaN/YbN=5.00-5.29, and εNd (0) =1.92. Spinels of 2006T98 display high TiO2 (generally >0.2%) and a Cr number mainly between 70 and 85, other spinels are characterized by low TiO2 (generally <0.2%) and a Cr number mainly between 60 and 90. The largest population of detrital zircons is within 90-146 Ma range with high εHf (t). The lithic arkose in Jiachala formation is characterized by, SiO2 =64.6%, Al2O3=12.1%, Na2O=1.9%, K2O=1.8%, LaN/YbN=7.73-9.13, and εNd (0) =-5.52~-8.43. Spinels in the Jiachala formation have low TiO2 (generally <0.2%) and a Cr number between 39 and 88. Detrital zircons have a wide range of age distribution of 82-3165Ma with complex εHf (t). In Gamba, The quartze sandstone in Jidula formation is characterized by, SiO2=97.4%, Al2O3=0.9%, Na2O=0.03%, K2O=0.18%, LaN/YbN=18.70-21.684, and εNd (0) between -13.1~-7.4. While the lithic arkose in Zhepure formation is characterized by, SiO2=68.4%, Al2O3=7.3%, Na2O=1.15%, K2O=0.52%, LaN/YbN=6.09-8.99, and εNd(0)=-5.8~-6.3. Based on our geochemical analysis, spinles electron microprobe data, U–Pb ages and Hf isotope data for detrital zircons of the late Cretaceous-Eocene strata in Gyantze and Gamba, southern Tibet, the following major conclusions can be drawn: 1. In Gyantze, the Zongzhuo mélange was mainly derived from accretionary prism/THS of continental slop and Gangdese arc. Rilang conglomerate was totally from Gangdese arc. The Jiachala formation was derived from THS, suture zone and Gangdese arc. 2. In Gamba, the Jidula formation was from India craton, while the Zhepure formation was derived from THS, suture zone and Gangdese arc. 3. The deposite of Zongzhuo mélange and Rilang conglomerate (73-55Ma) marks the collision between India and Asia. 4. Late Paleocene-Eocene tectonic evolution is consistent with foreland basin system.
Resumo:
In order to know better about the Phanerozoic lithosphere thinning process of Sino-Korea Plate, four Cretaceous intrusion complexes and their ultramafic xenoliths are investigated by this thesis, which are located in Laiwu, Shandong Province, Eastern China, a region far away from plate margin. The four complexes, Kuanshan, Jiaoyu, Jingniushan and Tietonggou, intruded into Archaeozoic granite gneiss and Paleozoic carbonate rocks with scam iron ore at their contact zone. The four complexes can be divided into two magma series, abyssal rocks for the early and hypabyssal rocks for the later. K-Ar dating show that the abyssal rocks intrusion began with 120 ±2 Ma and the hypabyssal rocks intruded about 113 Ma. Abyssal rocks, mainly made up of augite diorites, amphibole diorites and gabbros for the lesser, are chemically characterized with high-Mg (Mg#>0.5) high-K calcalklic rock, which are depleted with Nb, Ta and Ti related to LILE and extremely enriched with Sr and Pb. Comparatively, augite diorites are the most LREE enriched in abyssal rocks, and they show no Eu abnorrnity or weak positive Eu abnormity. Gabbros show the least LREE enrichment with a strong Eu abnormity relatively. In (~(87)Sr/~(86)Sr)_1 -ε Nd(T) diagram, the abyssal rocks show a mixing trend , a rapid change in ε Nd(T) with a relatively small change in (~(87)Sr/~(86)Sr)_1. Low radiogenic Sr and Pb composition with high radiogeic Nd composition indicate that the mixing processes happened in lower crust Melt-rock interactions in lower crust might be the most possible processes to produce these high-Mg and high-K calcalklic magmas. Hypabyssal rocks, mainly made up of granite porphyry and dioritic porphrite, show much higher ε Nd(T) than abyssal rocks. Granite porphyry are distinct with an adakite geochemical characteristics, high (La/Yb)_N, Sr/Y and low Rb/Sr ratio. The adakitic granite porphyry indicates a new lower crust produced by underplating within plate. Ultramafic xenoliths had been found only in augite diorites and amphibole diorites. Field investigations show that ultramafic xenoliths in augite diorites had been inherited from amphibole diorites, so ultramafic xenoliths had been only entrained by hydrous dioritic magma. Ultramafic xenoliths are mainly made up of dunite and harzburgite, orthopyroxenite and bistangite are the lessor. Coarse olivines in dunite often show many chromite exsolution lamellae. Opx in orthopyroxenite often show dense chromite exsolution lamellae. The presence of exsolution minerals indicates that ultramafic xenoliths had cooled before entraining. Metasomatism phenomenons are popular in dunite and harzburgite xenoliths, including two kinds of assemblage, cpx+phlogapite and opx+pl. The first metasomatism assemblage indicates an ancient enrichment. Rb-Sr dating of xenoliths shows that the ancient enrichment happened in 223 ± 7Ma. The second metasomatism assemblage indicates a recent, relatively not deep melt-rock interaction, which might be related with the genesis of the high-Mg high-K calcalklic rocks. Mineralogy and geochemistry indicate that these ultramafic xenoliths might sample the crust-mante transition zone (or the base of lower crust, moho). Investigation of high-Mg intrusions and their ultramafic xenoliths in Laiwu indicate that the thinning processes of Sino-Korea Plate can be divided into two stages. The first stage is lithosphere mantle thinning with crust thickening by underplating in lower crust. The second stage is that the thickened lower crust delaminated into the underlying mantle.
Resumo:
In order to realize fast development of the national economy in a healthy way and coordinate progress with whole society, the country has implemented the strategy of development of the western region. An important action of finishing this strategic task is to accelerate the highway construction in the western region, join the western region and places along the coast, the river, the border with goods and materials, technology, and personnel interchanges, and then drive development of the local economy.The western region was influenced by the Himalaya Tectonization in Cenozoic, and the crust rose and became the plateau. In the course of rising, rivers cut down sharply to form a lot of high mountains and gorges.Because of topography and geomorphology, bridges in the traffic construction in the alpine gorge area are needed. Rivers have characteristics of large flow, fast velocity and high and steep river valley, so building a pier in the river is not only very difficult, but also making the cost increase. At the same time, the impact that the pier is corroded and the bridge base that is drawn to be empty by flow are apt to cause destruction of the pier. For those reasons, suspending bridge and cable-stay bridge are usually adopted with the single and large span. For the large span bridge, the pier foundation could receive ten thousand and more vertical strength, bending moment and near kiloton horizontal thrust.Because bank slope in the alpine gorge district is cut deeply and unsettled big, natural stability is worse under endogenic and exogenic force. When bank slope bears heavy vertical strength, bending moment and horizontal thrust facing the river, it will inevitably make the balance state of rock and soil mass change, bridge bank slope deform, and even destroyed. So the key problem at the time of the large span's bridge construction in the alpine gorge area is how to make it stable.So based on the spot investigation, the Engineering Geology Analysis Method is very important to grasp the bank slope stability. It can provide the bank slope stability macroscopic ally and qualitatively, and reference to the indoor calculation. The Engineering Geology Analysis Method is that by way of analyzing and investigating terms of bank slope instability, stability development trend, the ancient rock slide and devolution in the site, stability comprehensive evaluation primarily, current and future stability of bank slope is gotten, realizing the intention to serving the concrete engineering.After the Engineering Geology Analysis Method is applied to project instances of BeiPan River Bridge and BaLin River Bridge, results are accord with bank slope actual conditions, which proves sites are suited to building bridges from site stability.we often meet bank slope stability issues in the traffic construction in the alpine gorge areao Before the evaluation of the bank slope stability, the engineering geological condition is investigated first. After that, the next exploration target and geology measures are decided. So, the Engineering Geology Analysis Method that the investigation of the engineering geological condition is the main content is quite important in practice. The other evaluations of the bank slope stability are based on it. Because foundation receives very heavy load, for the big span's bridge in the alpine gorge area, a long pile of the large diameter (D^0.8m) is usually selected. In order to reflect rock mass's deformation properties under rock-socketed pile function, the author has used the FLAG30 software for rock and soil mass and done many numerical simulations. By them, the author launches the further investigation on deformation properties of bank slope under different slope angle, pile length, diameter, elastic modulus, load, bank slope's structure, etc. Some conclusion meaningful to the design and produce are obtained.
Resumo:
本文按物源的不同,将全区分为5个砂金富集区和10个砂金富集亚区,总结了砂金矿的富集规律,并划分了砂金矿的成因类型。重点研究了砂金的形貌、粒度、成色、内部构造、化学成分及连生矿物。还研究了砂砾石的分布特点,重砂矿物组合,植物、水及砂砾石中金的含量,沉积物的构造及其形成环境、时代。根据所获取的成因信息,划分了砂金的成矿期。深入讨论了成矿条件,包括成矿过程中的原生和次生物源,和成矿环境(新构造运动和气候)。最后,建立了砂金矿的“物源-新构造运动-气候”三因素成矿模式。