123 resultados para Lattice-Valued Fuzzy connectives. Extensions. Retractions. E-operators
Resumo:
A theoretical analysis has been performed by means of the plane-wave expansion method to examine the dispersion properties of photons at high symmetry points of an InP based two-dimensional photonic crystal with square lattice. The Q factors are compared qualitatively. The mechanism of surface-emitting is due to the photon manipulation by periodic dielectric materials in terms of Bragg diffraction. A surface-emitting photonic crystal resonator is designed based on the phenomenon of slow light. Photonic crystal slabs with different unit cells are utilized in the simulation. The results indicate that the change of the air holes can affect the polarization property of the modes. So we can find a way to improve the polarization by reducing the symmetry of the structure.
Resumo:
This paper proposes smart universal multiple-valued (MV) logic gates by transferring single electrons (SEs). The logic gates are based on MOSFET based SE turnstiles that can accurately transfer SEs with high speed at high temperature. The number of electrons transferred per cycle by the SE turnstile is a quantized function of its gate voltage, and this characteristic is fully exploited to compactly finish MV logic operations. First, we build arbitrary MV literal gates by using pairs of SE turnstiles. Then, we propose universal MV logic-to-value conversion gates and MV analog-digital conversion circuits. We propose a SPICE model to describe the behavior of the MOSFET based SE turnstile. We simulate the performances of the proposed gates. The MV logic gates have small number of transistors and low power dissipations.
Resumo:
A CMOS voltage-mode multi-valued literal gate is presented. The ballistic electron transport characteristic of nanoscale MOSFETs is smartly used to compactly achieve universal radix-4 literal operations. The proposed literal gates have small numbers of transistors and low power dissipations, which makes them promising for future nanoscale multi-valued circuits. The gates are simulated by HSPICE.
Resumo:
In this paper, we propose a lattice dynamic treatment for the total potential energy of single-walled carbon nanotubes (SWCNTs) which is, apart from a parameter for the nonlinear effects, extracted from the vibrational energy of the planar graphene sheet. The energetics, elasticity and lattice dynamics are treated in terms of the same set of force constants, independently of the tube structures. Based upon this proposal, we have investigated systematically the relaxed lattice configuration for narrow SWCNTs, the strain energy, the Young's modulus and Poisson ratio, and the lattice vibrational properties with respect to the relaxed equilibrium tubule structure. Our calculated results for various physical quantities are nicely in consistency with existing experimental measurements. In particular, we verified that the relaxation effect makes the bond length longer and the frequencies of various optical vibrational modes softer. Our calculation provides evidence that the Young's modulus of an armchair tube exceeds that of the planar graphene sheet, and that the large diameter limits of the Young's modulus and Poisson ratio are in agreement with the experimental values of graphite; the calculated radial breathing modes for ultra-narrow tubes with diameters ranging between 2 and 5 angstrom coincide with the experimental results and the existing ab initio calculations with satisfaction. For narrow tubes with a diameter of 20 angstrom, the calculated frequencies of optical modes in the tubule's tangential plane, as well as those of radial breathing modes, are also in good agreement with the experimental measurements. In addition, our calculation shows that various physical quantities of relaxed SWCNTs can actually be expanded in terms of the chiral angle defined for the corresponding ideal SWCNTs.
Resumo:
We report an effective and nondestructive method based on circular photogalvanic effect (CPGE) to detect the lattice polarity of InN. Because of the lattice inversion between In- and N-polar InN, the energy band spin splitting is opposite for InN films with different polarities. Consequently under light irradiation with the same helicity, CPGE photocurrents in In- and N-polar layers will have opposite directions, thus the polarity can be detected. This method is demonstrated by our CPGE measurements in both n- and p-type InN films.
Resumo:
We study the spin-Hall effect in a generalized honeycomb lattice, which is described by a tight-binding Hamiltonian including the Rashba spin-orbit coupling and inversion-symmetry breaking terms brought about by a uniaxial pressure. The calculated spin-Hall conductance displays a series of exact or approximate plateaus for isotropic or anisotropic hopping integral parameters, respectively. We show that these plateaus are a consequence of the various Fermi-surface topologies when tuning epsilon(F). For the isotropic case, a consistent two-band analysis, as well as a Berry-phase interpretation. are also given. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study the spin Hall effect in the kagome lattice with Rashba spin-orbit coupling. The conserved spin Hall conductance sigma(s)(xy) (see text) and its two components, i.e., the conventional term sigma(s0)(xy) and the spin-torque-dipole term sigma(s tau)(xy), are numerically calculated, which show a series of plateaus as a function of the electron Fermi energy epsilon(F). A consistent two-band analysis, as well as a Berry-phase interpretation, is also given. We show that these plateaus are a consequence of various Fermi-surface topologies when tuning epsilon(F). In particular, we predict that compared to the case with the Fermi surface encircling the Gamma point in the Brillouin zone, the amplitude of the spin Hall conductance with the Fermi surface encircling the K points is twice enhanced, which makes it highly meaningful in the future to systematically carry out studies of the K-valley spintronics.
Resumo:
Misfit defects in a 3C-SiC/Si (001) interface were investigated using a 200 kV high-resolution electron microscope with a point resolution of 0.194 nm. The [110] high-resolution electron microscopic images that do not directly reflect the crystal structure were transformed into the structure map through image deconvolution. Based on this analysis, four types of misfit dislocations at the 3C-SiC/Si (001) interface were determined. In turn, the strain relaxation mechanism was clarified through the generation of grow-in perfect misfit dislocations (including 90 degrees Lomer dislocations and 60 degrees shuffle dislocations) and 90 partial dislocations associated with stacking faults. (C) 2009 American Institute of Physics. [doi:10.1063/1.3234380]
Resumo:
The photoluminescence (PL) characteristics of GaAsSbN/GaAs epilayers grown by molecular beam epitaxy (MBE) are carefully investigated. The results show that antimony (Sb) incorporation into GaNAs material has less influence on the N-induced localization states. For the same N concentration, GaAsSbN material can reach an emission wavelength near 1.3 mum more easily than GaInNAs material. The rapid thermal annealing (RTA) experiment shows that the annealing induced rearrangement of atoms and related blueshift in GaAsSbN epilayers are smaller than those in GaNAs and GaInNAs epilayers. The GaAsSbN material can keep a longer emission wavelength near 1.3 mum-emission even after the annealing treatment. Raman spectroscopy analysis gives further insight into the structure stability of GaAsSbN material after annealing. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper proposes a novel single-electron multiple-valued memory. It is a metal-oxide-semiconductor field effect transistor (MOS)-type memory with multiple separate control gates and floating gate layer, which consists of nano-crystal grains. The electron can tunnel among the grains (floating gates) and between the floating gate layer and the MOS channel. The memory can realize operations of 'write', 'store' and 'erase' of multiple-valued signals exceeding three values by controlling the single electron tunneling behavior. We use Monte Carlo method to simulate the operation of single-electron four-valued memory. The simulation results show that it can operate well at room temperature.
Resumo:
Self-assembled InAs quantum dots (QDs) in an InAlGaAs matrix, lattice-matched to InP substrate, have been grown by molecular beam epitaxy (MBE). Transmission electron microscopy (TEM), double-crystal X-ray diffraction (DCXRD) and photoluminescence (PL) are used to study their structural and optical properties. In InAs/InAlGaAs/ InP system, we propose that when the thickness of InAs layer deposited is small, the random strain distribution of the matrix layer results in the formation of tadpole-shaped QDs with tails towards random directions, while the QDs begin to turn into dome-shaped and then coalesce to form islands with larger size and lower density to release the increasing misfit strain with the continuous deposition of InAs. XRD rocking curves showing the reduced strain with increasing thickness of InAs layer may also support our notion. The results of PL measurements are in well agreement with that of TEM images. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The effects of lattice vibration on the system in which the electron is weakly coupled with bulk longitudinal optical phonons and strongly coupled with interface optical phonons in an infinite quantum well were studied by using Tokuda' linear-combination operator and a modified LLP variational method. The expressions for the effective mass of the polaron in a quantum well QW as functions of the well's width and temperature were derived. In particular, the law of the change of the vibration frequency of the polaron changing with well' s width and temperature are obtained. Numerical results of the effective mass and the vibration frequency of the polaron for KI/AgCl/Kl QW show that the vibration frequency and the effective mass of the polaron decrease with increasing well's width and temperature, but the contribution of the interaction between the electron and the different branches of phonons to the effective mass and the vibration frequency and the change of their variation with the well's width and temperature are greatly different.
Resumo:
A numerical study of the defect modes in two-dimensional photonic crystals with deformed triangular lattice is presented by using the supercell method and the finite-difference time-domain method. We find the stretch or shrink of the lattice can bring the change not only on the frequencies of the defect modes but also on their magnetic field distributions. We obtain the separation of the doubly degenerate dipole modes with the change of the lattice and find that both the stretch and the shrink of the lattice can make the dipole modes separate large enough to realize the single-mode emission. These results may be advantageous to the manufacture of photonic crystal lasers and provide a new way to realize the single-mode operation in photonic crystal lasers.
Resumo:
With a series of supportive experimental phenomena as induced by ion beam bombardment, energetic beaminduced athermal activation process in Si is demonstrated. This is correlated with phenomena induced by ultrafast energy exchange in condensed matter in general. A critical modelling is presented on the above process and a universal concept: the ultrafast energy exchange-induced soft mode of phonons and the lattice instability in condensed matter are proposed.
Resumo:
In order to effectively improve the classification performance of neural network, first architecture of fuzzy neural network with fuzzy input was proposed. Next a cost function of fuzzy outputs and non-fuzzy targets was defined. Then a learning algorithm from the cost function for adjusting weights was derived. And then the fuzzy neural network was inversed and fuzzified inversion algorithm was proposed. Finally, computer simulations on real-world pattern classification problems examine the effectives of the proposed approach. The experiment results show that the proposed approach has the merits of high learning efficiency, high classification accuracy and high generalization capability.