70 resultados para Integrated optics
Resumo:
This paper describes the high performance of narrow-beam divergence spot size converter (SSC) integrated separately confined heterostructure (SCH) LD. The upper optical confinement layer (OCL) and the butt-coupled tapered thickness waveguide were regrown simultaneously, which not only offered the separated optimization of the active region and the integrated spotsize converter, but also reduced the difficulty of the butt-joint selective regrowth. The threshold current was as low as 5.4 mA, the output power at 55 mA was 10.1 mW, the vertical and horizontal far field divergence angles were as low as 9°and 15°, and the 1-dB misalignment tolerances were 3.6 and 3.4μm, respectively.
Resumo:
In this paper, we present simulation results of an electrooptical variable optical attenuator (VOA) inte-grated in silicon-on-insulator waveguide. The device is functionally based on free carriers absorption toachieve attenuation. Beam propagation method (BPM) and two-dimensional semiconductor device simu-lation tool PISCES-Ⅱ were used to analyze the dc and transient characteristics of the device. The devicehas a response time (including rise time and fall time) less than 200 ns, much faster than the thermoopticand micro-electromechanical systems (MEMSs) based VOAs.
Resumo:
A comprehensive model of laser propagation in the atmosphere with a complete adaptive optics (AO) system for phase compensation is presented, and a corresponding computer program is compiled. A direct wave-front gradient control method is used to reconstruct the wave-front phase. With the long-exposure Strehl ratio as the evaluation parameter, a numerical simulation of an AO system in a stationary state with the atmospheric propagation of a laser beam was conducted. It was found that for certain conditions the phase screen that describes turbulence in the atmosphere might not be isotropic. Numerical experiments show that the computational results in imaging of lenses by means of the fast Fourier transform (FFT) method agree well with those computed by means of an integration method. However, the computer time required for the FFT method is 1 order of magnitude less than that of the integration method. Phase tailoring of the calculated phase is presented as a means to solve the problem that variance of the calculated residual phase does not correspond to the correction effectiveness of an AO system. It is found for the first time to our knowledge that for a constant delay time of an AO system, when the lateral wind speed exceeds a threshold, the compensation effectiveness of an AO system is better than that of complete phase conjugation. This finding indicates that the better compensation capability of an AO system does not mean better correction effectiveness. (C) 2000 Optical Society of America.
Resumo:
In this paper, several simplification methods are presented for shape control of repetitive structures such as symmetrical, rotational periodic, linear periodic, chain and axisymmetrical structures. Some special features in the differential equations governing these repetitive structures are examined by considering the whole structures. Based on the special properties of the governing equations, several methods are presented for simplifying their solution process. Finally, the static shape control of a cantilever symmetrical plate with piezoelectric actuator patches is demonstrated using the present simplification method. The result shows that present methods can effectively be used to find the optimal control voltage for shape control.
Resumo:
It is well known that noise and detection error can affect the performances of an adaptive optics (AO) system. Effects of noise and detection error on the phase compensation effectiveness in a dynamic AO system are investigated by means of a pure numerical simulation in this paper. A theoretical model for numerically simulating effects of noise and detection error in a static AO system and a corresponding computer program were presented in a previous article. A numerical simulation of effects of noise and detection error is combined with our previous numeral simulation of a dynamic AO system in this paper and a corresponding computer program has been compiled. Effects of detection error, readout noise and photon noise are included and investigated by a numerical simulation for finding the preferred working conditions and the best performances in a practical dynamic AO system. An approximate model is presented as well. Under many practical conditions such approximate model is a good alternative to the more accurate one. A simple algorithm which can be used for reducing the effect of noise is presented as well. When signal to noise ratio is very low, such method can be used to improve the performances of a dynamic AO system.
Resumo:
Based on the computer integrated and flexible laser processing system, an intelligent measuring sub-system was developed. A novel model has been built up to compensate the deviations of the main frame-structure, and a new 3-D laser tracker system is applied to adjust the accuracy of the system. To analyze the characteristic of all kind surfaces of automobile outer penal moulds and dies, classification of types of the surface、brim and ridge(or vale) area to be measured and processed has been established, resulting in one of the main processing functions of the laser processing system. According to different type of surfaces, a 2-D adaptive measuring method based on B?zier curve was developed; furthermore a 3-D adaptive measuring method based on Spline curve was also developed. According to the laser materials processing characteristics and data characteristics, necessary methods have been developed to generate processing tracks, they are explained in details. Measuring experiments and laser processing experiments were carried out to testify the above mentioned methods, which have been applied in the computer integrated and flexible laser processing system developed by the Institute of Mechanics, CAS.
Resumo:
It is well-known that cone effect or focus anisoplanatism is produced by the limited distance of a laser guide star (LGS) which is created within the Earth atmosphere and consequently located at a finite distance from the observer. In this paper, the cone effect of the LGS for different vertical profiles of the refractive index structure constant Cn2 is numerically investigated by using a revised computer program of atmospheric propagation of optical wave and an adaptive optics (AO) system including dynamic control process. According to the practice, the overall tilt for the tilt-correction mirror is obtained from a natural star and the aberrated wavefront for phase correction of the deformable mirror is obtained from a LGS in our numerical simulation. It is surprisingly found that the effect of altitude of the LGS on the AO phase compensation effectiveness by using the commonly-available vertical profiles of Cn2 and the lateral wind speed in the atmosphere is relatively weak, and the cone effect for some Cn2 profiles is even negligible. It is found that the cone effect does not have obvious relationship with the turbulence strength, however, it depends on the vertical distribution profile of Cn 2 apparently. On the other hand, the cone effect depends on the vertical distribution of the lateral wind speed as well. In comparison to a longer wavelength, the cone effect becomes more obvious in the case of a shorter wavelength. In all cases concerned in this paper, an AO system by using a sodium guide star has almost same phase compensation effectiveness as that by using the astronomical target itself as a beacon. Effect of dynamic control process in an AO system on the cone effect is studied in this paper for the first time within our knowledge.
The Intelligent Measuring Sub-System in the Computer Integrated and Flexible Laser Processing System
Resumo:
Based on the computer integrated and flexible laser processing system, develop the intelligent measuring sub-system. A novel model has been built to compensate the deviations of the main frame, a new-developed 3-D laser tracker system is applied to adjust the accuracy of the system. Analyzing the characteristic of all kinds of automobile dies, which is the main processing object of the laser processing system, classify the types of the surface and border needed to be measured and be processed. According to different types of surface and border, develop 2-D adaptive measuring method based on B?zier curve and 3-D adaptive measuring method based on spline curve. During the data processing, a new 3-D probe compensation method has been described in details. Some measuring experiments and laser processing experiments are carried out to testify the methods. All the methods have been applied in the computer integrated and flexible laser processing system invented by the Institute of Mechanics, CAS.
Resumo:
We propose an integrated algorithm named low dimensional simplex evolution extension (LDSEE) for expensive global optimization in which only a very limited number of function evaluations is allowed. The new algorithm accelerates an existing global optimization, low dimensional simplex evolution (LDSE), by using radial basis function (RBF) interpolation and tabu search. Different from other expensive global optimization methods, LDSEE integrates the RBF interpolation and tabu search with the LDSE algorithm rather than just calling existing global optimization algorithms as subroutines. As a result, it can keep a good balance between the model approximation and the global search. Meanwhile it is self-contained. It does not rely on other GO algorithms and is very easy to use. Numerical results show that it is a competitive alternative for expensive global optimization.
Resumo:
We demonstrate that a Raman sensor integrated with a micro-heater, a microfluidic chamber, and a surface-enhanced Raman scattering (SERS) substrate can be fabricated in a glass chip by femtosecond laser micromachining. The micro-heater and the SERS substrate are fabricated by selective metallization on the glass surface using a femtosecond laser oscillator, whereas the microfluidic chamber embedded in the glass sample is fabricated by femtosecond laser ablation using a femtosecond laser amplifier. We believed that this new strategy for fabricating multifunctional integrated microchips has great potential application for lab-on-a-chips. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
随着研究工作的逐步深入,目前已经利用经典热光源实现了关联衍射成像,使得该技术有望在X射线以及中子衍射成像等方面得到广泛应用。在实验利用非相干光得到物体无透镜傅里叶变换频谱的基础上,采用误差消除与输入输出恢复算法,并结合过采样理论,实现了实验所用物体透射率函数的恢复。分别得到了纯振幅物体的振幅分布函数与纯相位物体的相位分布函数。此外,还讨论了实验所得傅里叶变换频谱的噪声等因素对图像恢复结果的影响。
Resumo:
The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy. (c) 2006 Optical Society of America.