96 resultados para Identity by descent matrix
Resumo:
We investigate the annealing behavior of Photoluminescence (PL) from self-assembled InAs quantum dots (QDs) with different thicknesses GaAs cap layers. The diffusion introduced by annealing treatment results in a blue-shift of the QD PL peak, and a decrease in the integrated intensity. The strain present in QDs enhances the diffusion, and the QDs with the cap layers of different thicknesses will experience a strain of different strength. This can lend to a, better understanding of the larger blue-shift of the PL peak of the deeper buried QDs, and the different variance of the full width at half maximum of the luminescence from QDs with the cap layers of different thicknesses.
Resumo:
The isoflavonoids in Radix astragali were determined and identified by HPLC-photodiode array detection-MS after extraction employing matrix solid-phase dispersion (MSPD). As a new sample preparation method for R. astragali, the MSPD procedure was optimized, validated and compared with conventional methods including ultrasonic and Soxhlet extraction. The amounts of two major components in this herb, formononetin (6) and ononin (2), were determined based on their authentic standards. Four major isoflavonoids, formononetin (6), ononin (2), calycosin (5) and its glycoside (1), and three minor isoflavonoids, (6aR,11aR)-3-hydroxy-9, 10-dimethoxypterocarpan (7), its glycoside (3), and (3R)-7,2'-dihydroxy-3',4'-dimethoxyisoflavone-7-O-beta-D-glycoside (4), were identified based on their characteristic two-band UV spectra and [M + H](+), [aglycone + H](+) and [A1 + H](+) ions, etc. The combined MSPD and HPLC-DAD-MS method was suitable for quantitative and qualitative determination of the isoflavonoids in R. astragali. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Desorption/ionization on silicon mass spectrometry (DIOS-MS) is a matrix-free technique that allows for the direct desorption/ionization of low-molecular-weight compounds with little or no fragmentation of analytes. This technique has a relatively high tolerance for contaminants commonly found in biological samples. DIOS-MS has been applied to determine the activity of immobilized enzymes on the porous silicon surface. Enzyme activities were also monitored with the addition of a competitive inhibitor in the substrate solution. It is demonstrated that this method can be applied to the screening of enzyme inhibitors. Furthermore, a method for peptide mapping analysis by in situ digestion of proteins on the porous silicon surface modified by trypsin, combined with matrix-assisted laser desorption/ionization-time of flight-MS has been developed.
Resumo:
A novel protocol has been established to separate dsDNA fragments with high efficiency on glass chips by using an ultralow viscosity sieving matrix with added glucose. Low-molecular-weight hydroxypropylmethylcellulose (HPMC), with a viscosity nearly equivalent to that of water, was used to electrophoretically separate fluorescent inter-calator-labeled double-stranded DNA (dsDNA) fragments on microfluidic glass chips. In comparison with conventional sieving protocols, low-molecular-weight HPMC as sieving matrix could result in reduced running cost and analysis time, in addition to a comparable separation efficiency of dsDNA fragments. In this paper, the addition of glucose was investigated to enhance the separation of DNA in the lowest viscosity polymer evaluated. The effect of staining dye and field strength were also evaluated. At an applied electric field strength of 200 V/cm, satisfactory resolution of the PBR322/HaeIII DNA marker could be achieved within 4 min by using 2% HPMC-5 with 6% glucose added. Coelectrophoresing PCR product along with phiX174/HaeIII DNA sizing marker was also demonstrated by using the ultralow viscosity HPMC-5 solution on a glass chip.
Resumo:
Peptide mass mapping analysis, utilizing a regenerable enzyme microreactor with metal-ion chelated adsorption of enzyme, combined with matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was developed. Different procedures from the conventional approaches were adopted to immobilize the chelator onto the silica supports, that is, the metal chelating agent of iminodiacetic acid (IDA) was reacted with glycidoxypropyltrimethoxysilane (GLYMO) before its immobilization onto the inner wall of the fused-silica capillary pretreated with NH4HF2. The metal ion of copper and subsequently enzyme was specifically adsorbed onto the surface to form the immobilized enzyme capillary microreactor, which was combined with MALDI-TOF-MS to apply for the mass mapping analysis of nL amounts of protein samples. The results revealed that the peptide mapping could routinely be generated from 0.5 pmol protein sample in 15 min at 50degreesC, even 20 fmol cytochrome c could be well digested and detected.
Resumo:
This paper reports a new patterning method, the complementary-structure micropatterning (CSMP) technique, to fabricate the undercut structures for the passive-matrix display of organic light-emitting diodes (OLEDs). First, the polyvinylpyrrolidone (PVP) stripe patterns with a trapeziform cross-section were formed by micromolding in capillaries. Then the photoresist was spin coated on the substrate with the patterned PVP stripes and developed in water.
Resumo:
A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M + n + n' matrix + H](+) or [M + n + n' matrix + Na](+) (n = the number of cysteine residues, n' = 1, 2, ..., n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, alpha-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and alpha-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated.
Resumo:
The molecular weight of recombinant hirudin ( rHV-2) was determined rapidly by matrix-assisted laser desorption/ionization time of fight mass spectrometry (MALDI-TOF-MS). The effects of the three types of matrixes were compared and discussed, alpha-cynao-4-hydroxycinnamic acid was proved to be the best matrix. It showed that MALDI-TOF-MS was superior to the traditional method of molecular weight determination of the biological macromolecules. The mass spectrum data proved that the primary structure of rHV-2 was correct and there was no amino acid deletion, mutation and modification in its expression, refolding and purification.
Resumo:
In this work, we report the findings of a study on scanning electrochemical microscopy (SECM) to investigate the interfacial electron-transfer (ET) reaction between the 7,7,8,8-tetracyanoquinodimethane radical anion (TCNQ(.-)) in 1,2-dichloroethane and ferricyanide in an ice-like matrix (a mixture of insulting ice and conductive liquid) under low temperatures. Experimental results indicate that the formed liquid/ice-like matrix interface is superficially similar in electrochemical characteristics to a liquid/liquid interface at temperatures above -20 degreesC. Furthermore, imaging data show that the surface of the ice-like matrix is microscopically flat and physically stable and can be applied as either a conductive or an insulting substrate for SECM studies. Perchlorate ion was selected as the common ion in both phases, the concentrations of which controlled the interfacial potential difference. The effect of perchlorate concentration in the DCE phase on interfacial reactions has been studied in detail. The apparent heterogeneous rate constants for TCNQ(.-) oxidation by Fe(CN)(6)(3-) in another phase under different temperatures have been calculated by a best-fit analysis, where the experimental approach curves are compared with the theoretically derived relationships. Reaction rate data obey Butler-Volmer formulation before and after the freezing point, which is similar to most other known cases of ET reactions at liquid/liquid interfaces. However, there is a sharp change observed for heterogeneous rate constants around the freezing point of the aqueous phase, which reflects the phase transition. At temperatures below -20 degreesC, surface-confined voltammograms for the reduction of ferricyanide were obtained, and the ice-like matrix became an insulating one, which indicates that the aqueous phase is really a frozen phase.
Resumo:
Matrix effects arising from ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine in inductively coupled plasma mass spectrometry have been studied. Addition of ethanol, propanol, glycerol, acetic acid, ethylenediamine and triethanolamine into solution has an enhancement effect on the signal intensity of analyte with ionization potential between 9 and 11 eV. The ethylenediamine and triethanolamine have higher enhancement effect on the signal intensity of Hg than that of ethanol, propanol, glycerol and acetic acid. Addition of ethylenediamine and triethanolamine into solution has a suppression effect on the signal intensity of Ph and Sr. The mechanism of the enhancement or suppression was investigated. The signal enhancement of Hg in the presence of ethylenediamine and triethanolamine is not caused by improved degree of ionization of Hg and nebulization efficiency. The suppression effects of Ph and Sr in the presence of ethylenediamine and triethanolamine are due to decrease of atomization efficiency of these elements. A method for the determination of Hg in the biological standard samples Ly ICP-MS was developed.
Resumo:
Monodispersed polyaniline oligomers was studied by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), It is found that MALDI-TOF-MS is not only a direct, accurate and rapid tool for the analysis of monodispersed polyaniline oligomers, but also a useful technique for the design of synthetic route.
Resumo:
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MAIDI-TOF-MS) was used for analysis of poly(arylene phosphonate) cyclic oligomers. A comparison was made by using 1,8,9-dithranol, 2,5-dihydroxybenzoic acid and retinoic acid as the matrix. The result showed that the retinoic acid produced the strongest ion signals under the conditions used. Different salts of metals were used as the cationization agents to examine the effect on the cyclic oligomers. It was found that the salts could produce metal-cyclic oligomer cation spectra and lithium was the stronger one than those of silver so, the suitable matrix and cationization agent for the new cyclic oligmer were obtained. They were very effective for the analysis of poly(arylene phosphonate) cyclic oligomer.
Resumo:
The p-toluene sulfonic acid (MA) in phenol matrix was separated and determined by capillary electrophoresis with ultraviolet detector. the effect of the concentration and pH of the buffer on separation was investigated. Cinnamic acid has been chosen as the internal standard from four compounds, the calibration curves of PTSA in 50 mg/L phenol matrix were obtained with and without the internal standard. The linear range was from 1.25 to 12.5 mg/L and the correlation coefficient was 0.9999 for both curves. The limit of detection of PISA was 0.75 mg/L at 3 times of SIN. Finally, the concentration of PTSA in four synthesized samples was determined with method of standard additions, and the effect of matrix was discussed. The values of MA in these samples were 1.01, 0.94, 1.56 and 0.00 mg/L respectively.