124 resultados para INSECTICIDE RESIDUE
Resumo:
Amphibian skin is a rich resource of antimicrobial peptides, like maximins and maximin Hs from frog Bombina maxima. Novel cDNA clones encoding a precursor protein, which comprises a novel maximin peptide (maximin 9) and reported maximin H3, were isolated from two constructed skin cDNA libraries of B. maxima. The predicted primary structure of maximin 9 is GIGRKFLGGVKTTFRCGVKDFASKHLY-NH2. A surprising substitution is at position 16, with a free cysteine in maximin 9 rather than usual conserved glycine in other reported maximins. Maximin 9, the homodimer form and its Cys(16) to Gly(16) mutant were synthesized and their antimicrobial activities were evaluated. Unlike previously reported maximin 3, the tested bacterial and fungal strains were resistant to maximin 9, its homodimer and the Cys(16) to Gly(16) mutant (with MICs > 100 mu M). On the other hand, interestingly, while eight clinical Mollicutes strains were generally resistant to maximin 9 homodimer and its Cys(16) to Gly(16) mutant, most of them are sensitive to maximin 9 at a peptide concentration of 30 mu M, especially in the presence of dithiothreitol. These results indicate that the presence of a reactive Cys residue in maximin 9 is important for its antimycoplasma activity. The diversity of antimicrobial peptide cDNA structures encountered in B. maxima skin cDNA libraries and the antimicrobial specificity differences of the peptides may reflect well the species' adaptation to the unique microbial environments. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Amphibian skin contains rich neuropeptides. In the present study, a novel neuromedin U (NmU) analog was isolated from skin secretions of Chinese red belly Load Bombina maxima. Being 17-amino acids long, its primary structure was established as DSSGIVGRPFFLFRPRN-NH2, in which the C-terminal 8-residue segment (FFLFRPRN) is the same as that of rat NmU, while the N-terminal part DSSGIVGRP shows a great sequence variation compared with those of NmU peptides from different resources. The peptide, named Bm-NmU-17, was found to elicit concentration-dependent contractile effects on smooth muscle of rat uterus horns. The cDNA Structure of the peptide, as obtained by a 3'-RACE strategy and subsequently cloning from a skin cDNA library, was found to contain a coding region of 438 nucleotides. The encoded precursor is composed of 145 amino acids with a single copy of Bm-NmU-17 located towards the C-terminus. The sequence of the peptide is preceded by a dibasic site (Lys-Arg) and followed by the sequence of Gly-Arg-Lys, providing the sites of cleavage and releasing of the mature peptide. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A novel peptide inhibitor (OGTI) of serine protease with a molecular weight of 1949.8, was purified from the skin secretion of the frog, Odorrana grahami. Of the tested serine proteases, OGTI only inhibited the hydrolysis activity of trypsin on synthetic chromogenic substrate. This precursor deduced from the cDNA sequence is composed of 70 amino acid residues. The mature OGTI contains 17 amino acid residues including a six-residue loop disulfided by two half-cysteines (AVNIPFKVHFRCKAAFC). In addition to its unique six-residue loop, the overall structure and precursor of OGTI are different from those of other serine protease inhibitors. It is also one of the smallest serine protease inhibitors ever found. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
While conducting experiments to investigate antimicrobial peptides of amphibians living in the Yunnan-Sichuan region of southwest China, a new family of antimicrobial peptides was identified from skin secretions of the rufous-spotted torrent frog, Amolops loloensis. Members of the new peptide family named amolopins are composed of 18 amino acids with a unique sequence, for example, NILSSIVNGINRALSFFG. By BLAST search, amolopins did no show similarity to any known peptides. Among the tested microorganisms, native and synthetic peptides only showed antimicrobial activities against Staphylococcus aureus ATCC2592 and Bacillus pumilus, no effects on other microorganisms. The CD spectroscopy showed that it adopted a structure of random combined with beta-sheet in water, Tris-HCl or Tris-HCl-SDS. Several cDNAs encoding amolopins were cloned from the skin cDNA library of A. loloensis. The precursors of amolopin are composed of 62 amino acid residues including predicted signal peptides, acidic propieces, and mature antimicrobial peptides. The preproregion of amolopin precursor comprises a hydrophobic signal peptide of 22 residues followed by an 18 residue acidic propiece which terminates by a typical prohormone processing signal Lys-Arg. The preproregions of precursors are very similar to other amphibian antimicrobial peptide precursors but the mature amolopins are different from other antimicrobial peptide families. The remarkable similarity of preproregions of precursors that give rise to very different antimicrobial peptides in distantly related frog species suggests that the corresponding genes form a multigene family originating from a common ancestor. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Many gene-encoded neurotoxins with various functions have been discovered in fish, reptiles, and mammals. A novel 60-residue neurotoxin peptide (anntoxin) that inhibited tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channel (VGSC) was purified and c
Resumo:
While investigating the innate defense of brackish water-living amphibian and its comparison with freshwater-living amphibians, two novel 12-residue antimicrobial peptides were purified from the skin secretions of the crab-eating frog, Fejervarya cancrivo
Resumo:
Some lepidopteran lysozymes have been reported to display activity against Gram-positive and Gram-negative bacteria, in contrast to most lysozymes that are active only against Gram-positive bacteria. OstrinLysC, a c-type lysozyme, was purified from the As
Resumo:
Three short-chain neurotoxins named NT-I, NT-II, and NT-III were purified from the venom of Naja kaouthia, a snake distributed throughout the south of Yunnan province, China, by a series of chromatographic steps, including an FPLC Resource S column. Their molecular weights, determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS, were 6952.19 Da, 6854.92 Da, and 6828.80 Da, respectively. NT-I consisted of 62 amino acid residues, and the other two consisted of 61 amino acid residues, including 8 cysteines. After hydrolysis by endoproteinase Glu-C, their primary sequences were determined. A test of their activities demonstrated that they effectively inhibited muscle contractions induced by electric stimulation. Furthermore, the extent of inhibition caused by NT-II and NT-III was less than that of NT-I. The IC(50)s were 0.04 mug/ml, 0.20 mug/ml, and 0.23 mug/ml for NT-I, NT-II, and NT-III, respectively. Compared with NT-II and NT-III, the higher activity of NT-I may be a result of the amino acid residue substitution Ile36 to Arg36.
Resumo:
It is well known that the chemokine receptor CCR5 plays very important roles in HIV-1 virus infection. A three-dimensional molecular model of human CCR5 was generated by SYBYL, a distance geometry-based homologous modeling package, using the corresponding transmembrane domain of bacteriorhodopsin as the template. On the basis of human CCR5 model, we also built 18 3D molecular models of CCR5 in primates from Pongo pygmaeus, Pygathrix nemaeus, Macaca assameniss, Trachy-pithecus phayrei, T. francoisi, M. arotoides, Rhinopithecus roxellance, R, bieti, R. avunculus, Hylobates leucogenys, Pan troglodytes, Gorilla gorilla, Cercopithecus aethiops 1, C. aethiops 2, Papio hamadryas M. mulatta, M. fascicularis and M. nemestrina. Structural analyses and statistics results suggested that the main-chains of the primate CCR5 were similar to that of the human CCR5 and that the fit-RMS deviation values of these primate CCR5 were less than 0.1 Angstrom. Moreover, the structures of these CCR5 proteins, except those of the African green monkey 1 (C.aet1), do not have a remarkable difference. It is proved that the 14th residue is possibly very important in the inhibition infections by M-tropic HIV-1, and it is also demonstrated that the 13th residue of human CCR5 was changed from asparagine into aspartic acid in all these primates. It means that the primate CCR5 no longer depend on CD4 for efficient entry, but human CCR5 may have evolved subsequently due to the use of CD4 as a receptor, allowing the high-affinity chemokine receptor-binding site of HIV to be sequestered from host immune surveillance. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Trichosanthin (TCS) was the first ribosome inactivating protein found to possess anti-HIV-1 activity. Phase I/II clinical trial of this compound had been done. Antigenicity and short plasma half-life were the major side effects preventing further clinical trial. Modification of TCS is therefore necessary to revive the interest to develop this compound as an anti-HIV agent. Three potential antigenic sites (Ser-7, Lys-173, and Gln-219) were identified by computer modeling. Through site-directed mutagenesis, these three antigenic amino acids were mutated to a cysteine residue resulting in 3 TCS mutants, namely S7C, K173C, and Q219C. These mutants were further coupled to polyethylene glycol with a molecular size of 20 kDa (PEG) via the cysteine residue. This produced another three TCS derivatives, namely PEG(20)k-S7C, PEG(20)k-K173C, and PEG(20)k-Q219C. PEGylation had been widely used recently to decrease immunogenicity by masking the antigenic sites and prolong plasma half-life by expanding the molecular size. The in vitro anti-HIV-1 activity of these mutants and derivatives was tested. Results showed that the anti-HIV-1 activity of S7C, K173C, and Q219C was decreased by about 1.5- to 5.5-fold with slightly lower cytotoxicity. On the other hand, PEGylation produced larger decrease (20- to 30-fold) in anti-HIV activity. Cytotoxicity was, however, weakened only slightly by about 3-fold. The in vitro study showed that the anti-HIV activity of PEGylated TCS was retained with reduced potency. The in vivo activity is expected to have only slightly changed due to other beneficial effects like prolonged half-life. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we present the results of purification and characterization of an arginine/lysine amidase from the venom of Ophiophagus hannah (OhS1). It was purified by Sephadex G-75 gel filtration and ion-exchange chromatography on DEAE-Sepharose CL-6B. It is a protein of about 43,000, consisting of a single polypeptide chain. It is a minor component in the venom. The purified enzyme was capable of hydrolysing several tripeptidyl-p-nitroanilide substrates having either arginine or lysine as the C-terminal residue. We studied the kinetic parameters of OhS1 on six these chromogenic substrates. OhS1 did not clot fibrinogen. Electrophoresis of fibrinogen degraded with OhS1 revealed the disappearance of the alpha- and beta-chains and the appearance of lower mel. wt fragments. OhS1 had no hemorrhagic activity. It did not hydrolyse casein, nor did it act on blood coagulation factor X, prothrombin and plasminogen. The activity of OhS1 was completely inhibited by NPGB, PMSF, DFP, benzamidine and soybean trypsin inhibitor, suggesting it is a serine protease. Metal chelator (EDTA) had no effect on it.
Resumo:
AIM: To study the interaction between human interleukin-16 (IL-16) and the receptor CD4 (T-lymphocyte differentiation antigen) of human immunodeficiency virus type 1 (HIV-1). METHODS: Two structurally con served regions (SCRs) of human IL-16 were built by the SYBYL/Biopolymer module using the corresponding transmembrane (TM) domain of human interleukin-1 (HIL-4) and HIL-2 as the templates. The coordinates for amino-terminal residue sequence, carboxyl-terminal residue sequences, and cytoplasm loops were generated using Biopolymer's LOOP SEARCH algorithm. RESULTS: HIL-16 first formed a homodimer, then contacted with CD4 dimer further forming a dimeric complex. Subsequently, the dimeric complex constructed the tetrameric complex by two disulfide bridges between the cysteines of HIL-16 (Cys31-Cys31). CONCLUSION: The interaction model is useful to propose the action mechanism of HIL-16 and is beneficial for rational designing of novel anti-HIV drugs.
Resumo:
AIM: To investigate the interaction between human CCR5 receptors (CCR5) and HIV-1 envelope glycoprotein gp120 (HIV-1 gp120) and HIV-1 receptor CD4 antigens (CD4). METHODS: The structurally con served regions (SCR) of human CCR5 was built by the SYBYL/Biopolymer module using the corresponding transmembrane (TM) domain of bacteriorhodopsin (bR) as the template. The coordinates for amino-ter minal residue sequence, and carboxyl-terminal residue sequence, extracellular and cytoplasmic loops were generated using LOOP SEARCH algorithm. Subsequently the structural model was merged into the complex with HIV-1 gp120 and CD4. RESULTS: Human CCR5 interacted with both an HIV-1 gp120 and CD4. The N-terminal residues (especially Met1 and Gln4) of human CCR5, contacted with CD4 residues, mainly 7Nith one span (56 - 59) of CD4 in electrostatic interaction and hydrogen-bonds. The binding sites of human CCR5 were buried in a hydrophobic center surrounded by a highly basic periphery. On the other hand, direct interatomic contacts were made between ? CCR5 residues and 6 gp120 amino-acid residues, which included van der Waals contacts, hydrophobic interaction, and hydrogen bonds. CONCLUSION: The interaction model should be helpful for rational design of novel anti-HIV drugs.
Resumo:
Three homologous short-chain neurotoxins, named NT1, NT2 and NT3, were purified from the venom of Naja kaouthia. NT1 has an identical amino acid sequence to cobrotoxin from Naja naja atra [Biochemistry 32 (1993) 2131]. NT3 shares the same sequence with cobrotoxin b [J. Biochem. (Tokyo) 122 (1997) 1252], whereas NT2 is a novel 6 1 -residue neurotoxin. Tests of their physiological functions indicate that NT1 shows a greater inhibition of muscle contraction induced by electrical stimulation of the nerve than do NT2 and NT3. Homonuclear proton two-dimensional NMR methods were utilized to study the solution tertiary structure of NT2. A homology model-building method was employed to predict the structure of NT3. Comparison of the structures of these three toxins shows that the surface conformation of NT1 facilitates the substituted base residues, Arg28, Arg30, and Arg36, to occupy the favorable spatial location in the central region of loop 11, and the cation groups of all three arginines face out of the molecular surface of NT1 This may contribute greatly to the higher binding of NT1 with AchR compared to NT2 and NT3. (C) 2002 Elsevier Science B,V. All rights reserved.
Resumo:
Midkine (Mdk) genes have been revealed to have different expression patterns in vertebrates and therefore, additional studies on Mdk expression patterns are required in more species. In this study, CagMdkb has been cloned and characterized from a SMART cDNA library of 10-somite stage embryos of Carassius auratus gibelio. Its full length cDNA is 1091 bp and encodes a sequence of 147 amino acids, which shows 97.3% identity to zebrafish Mdkb on the amino acid level. RT-PCR analysis reveals that CagMdkb is first transcribed in gastrula embryos and maintains a relatively stable expression level during subsequent embryogenesis. Western blot analysis reveals a 19 kDa maternal CagMdkb protein band and the zygotic CagMdkb protein is expressed from gastrula stage. At around 10 somite stage, the 19 kDa CagMdkb is processed to another protein band of about 17 kDa, which might be the secreted form with the 21-residue signal peptide removed. With immunofluorescence analysis, maternal CagMdkb protein was found to be localized in each blastamere cell of early embryos. The zygotic CagMdkb positive fluorescence signal was detected from a pair of large neurons at 18-somite stage. At the later stages, CagMdkb protein was also extended to numerous small neurons in the forebrain, midbrain and hindbrain, as well as to nerve fibers in the spinal cord. Co-localization with 3A10 antibody revealed CagMdkb immunoreactivity on developing Mauthner neurons, a member of reticulospinal neurons. In addition, ectopic expression of CagMdkb in early embryos of gibel carp and zebrafish suppressed head formation and CagMdkb function was found to depend on secretory activity. All these findings indicate that CagMdkb plays an important role in neural development during gibel carp embryogenesis and there is functional conservation of Mdkb in fish head formation.