54 resultados para Groups of Lie Type
Resumo:
A-type zeolite membranes were prepared on the nonporous metal supports by using electrophoretic technique. The as-synthesized membranes were characterized by XRD and SEM. The effect of the applied potential on the formation of the A-type zeolite membrane was investigated, and the formation mechanism of zeolite membrane in the electric field was discussed. The results showed that the negative charged zeolite particles could migrate to the anode metal surface homogenously and rapidly under the action of the applied electric field, consequently formed uniform and dense membranes in short time. The applied potential had great effect on the membrane formation, and more uniform and denser zeolite membranes were prepared on the nonporous metal supports with 1 V potential.
Resumo:
A-type zeolite membranes were successfully synthesized on tubular alpha-Al2O3 supports by secondary growth method with vacuum seeding In the seeding process, a thin, uniform and continuous seeding layer was closely attached to the support surface by the pressure difference between the two sides of the support wall. The effects of seed particle size, suspension concentration, coating pressure difference and coating time on the membrane and its pervaporation properties were investigated. The as-synthesized membranes were characterized by XRD and SEM. The quality of the membranes was evaluated by the pervaporation dehydration of 95 wt. % isopropanol/water mixture at 343 K. High quality A-type zeolite membranes can be reproducibly prepared by the secondary growth method with vacuum seeding under the conditions: seed particle size of 500-1200 nm, suspension concentration of 4-8 g/l, coating pressure difference of 0.0100-0.0250 MPa and coating time of 45-180 s. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Through leaching experiments and simulated rainfall experiments, characteristics of vertical leaching of exogenous rare earth elements (REEs) and phosphorus (P) and their losses with surface runoff during simulated rainfall in different types of soils (terra nera soil, cinnamon soil, red soil, loess soil, and purple soil) were investigated. Results of the leaching experiments showed that vertical transports of REEs and P were relatively low, with transport depths less than 6 cm. The vertical leaching rates of REEs and P in the different soils followed the order of purple soil > terra nera soil > red soil > cinnamon soil > loess soil. Results of the simulated rainfall experiments (83 mm h(-1)) revealed that more than 92% of REEs and P transported with soil particles in runoff. The loss rates of REEs and P in surface runoff in the different soil types were in the order of loess soil > terra nera soil > cinnamon soil > red soil > purple soil. The total amounts of losses of REEs and P in runoff were significantly correlated.
Resumo:
In this paper, we report a facile method for the fabrication of type-I collagen-silver nanoparticles (Ag NPs) multilayered films by utilizing type-I collagen as a medium. These samples were characterized by UV-vis spectra photometer, atomic force microscopy, scanning electron microscopy, and Fourier transform IR spectrum. Experimental results show that collagen molecules serve as effective templates to assemble Ag NPs into multilayer films. These samples exhibit high surface-enhanced Raman scattering (SERS) enhancement abilities.
Resumo:
A series of W-type ferrites with the composition of Ba1-xLaxCo2Fe16O27 (where, x = 0.0, 0.05, 0.10, 0.15, 020 and 0.25) were prepared by solid-state reaction method. The structure transformations of the ferrites were examined by XRD, DTA-TG and XPS, and the microwave-absorbing properties were investigated by evaluating the permeability and permittivity of materials (mu(r), epsilon(r)). The results showed that the phase-transition temperature increased with the addition of La2+ content, and a single-phase was formed at 1250 degrees C at last. Microwave properties were obviously improved as a result of the substitution of La3+ for Ba2+ at the frequency range of 0.5 similar to 18.0 GHz.
Resumo:
Through layer-by-layer (LBL) assembly technique, iron oxide (Fe3O4) nanoparticles coated by poly (diallyldimethylammonium chloride) (PDDA) and Preyssler-type polyoxometalates (NH4)(14)NaP5W30O110.31H(2)O (P5W30) were alternately deposited on quartz and ITO substrates, and 4-aminobenzoic acid modified glassy carbon electrodes. Thus-prepared multilayer films were characterized by UV-visible spectroscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. It was proved that the multilayer films are uniform and stable. And the electrocatalytic activities of the multilayer films can be fine-tuned by adjusting the assembly conditions in the LBL assembly process, such as the pH of the assembly solution. The multilayer films fabricated from P5W30 solutions dissolved in 0.1 M H2SO4 exhibit high electrocatalytic response and sensitivity toward the reduction of two substrates of important analytical interests, HNO2 and IO3- whereas the films assembled with P5W30 solutions dissolved in 1.0 M H2SO4 show remarkable electrocatalytic activity for the hydrogen evolution reaction (HER). Furthermore, the electrocatalytic properties of the HER of the latter film can be obtained from the former film upon exposure to 1.0 M H2SO4 for several hours.
Resumo:
Perovskite-type organic/inorganic hybrid layered compound (C6H5C2H4NH3)(2)PbI4 was synthesized. The patterning Of (C6H5C2H4NH3)(2)PbI4 thin films on silicon substrate was realized by the micromolding in capillaries (MIMIC) process, a kind of soft lithography. Bright green luminescent stripes with different widths (50, 15, 0.8 mum) have been obtained. The structure and optical properties Of (C6H5C2H4NH3)(2)PbI4 films were characterized by X-ray diffraction (XRD), UV/Vis absorption and photoluminescence excitation and emission spectra, respectively. It is shown that the organic-inorganic layered (C6H5C2H4NH3)(2)PbI4 film was c-axis oriented, paralleling to the substrate plane. Green exciton emission at 525 nm was observed in the film, and the explanations for it were given.
Resumo:
The fragmentation mechanism of aconitine-type alkaloids in the flowers of Aconitum kusnezoffii (FAK) was investigated using electrospray ionization tandem mass spectrometry (ESI-MSn) firstly. The analysis of the collision-induced dissociation (CID) spectra of three purified aconitine standards and six previously reported aconitines indicated that the fragmentation of the protonated aconitines at low-energy CID follows a similar pathway. The elimination of a C-8-substituent such as an acetic acid or a fatty acid is the dominant fragmentation mode in MS2. Successive losses of CH3COOH, CH3OH, H2O, BzOH, and CO are the main fragmentation pathways of aconitine-type alkaloids in MS3 spectra. Based on these features, a rapid method for the direct detection and characterization of alkaloids from an ethanolic extract of FAK is described. All the known aconitum alkaloids are detected and a series of lipo-aconitines has been found for the first time in this plant.
Circular dichroism and resonance Raman comparative studies of wild type cytochrome c and F82H mutant
Resumo:
The UV-visible, circular dichroism (CD), and resonance Raman (RR) spectra of the wild type yeast iso-1-cytochrome c (WT) and its mutant F82H in which phenylalanine-82 (Phe-82) is substituted with His are measured and compared for oxidized and reduced forms. The CD spectra in the intrinsic and Soret spectral region, as well as RR spectra in high, middle, and low frequency regions, are discussed. From the analysis of the spectra, it is determined that in the oxidized F82H the two axial ligands to the heme iron are His-18 and His-82 whereas in the reduced form the sixth ligand switches from His-82 to Met-80 providing the coordination geometry similar to that of WT. Based on the spectroscopic data, the conclusion is that the porphyrin macrocycle is less distorted in the oxidized F82H compared to the oxidized WT. Similar distortions are present in the reduced form of the proteins. Frequency shifts of Raman bands, as well as the decrease of the or-helix content in the CD spectra, indicate more open conformation of the protein around the heme. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The second-order nonlinear optical (NLO) tenser coefficients of LiXO3 (X = I; Nb or Ta) type complex crystals have been calculated using the chemical bond theory of complex crystals. Contributions of each type of bond to the total second-order NLO coefficient d(ij) and the linear susceptibility X are quantitatively determined. All tensor values thus calculated are in good agreement with experimental data. The Li-O bonds are found to be an important group in the contributions to the total NLO tenser coefficient, especially for those in LiNbO3 and LiTaO3. The importance of Li-O bonds depends on the environment of Li atom in these crystals.
Resumo:
Second order nonlinear optical (NLO) tensor coefficients of LiXO3 (X = I, Nb, Ta) type crystals have been evaluated on the basis of the dielectric theory of complex crystals and the modified bond charge model. The current method is capable of calculating single bond contributions to the total second order NLO susceptibility. The tenser values thus calculated agree well with experimental data. By introducing the subformula equation and the concept of the effective charge of one valence electron, we are able to successfully treat such complex crystals as LiXO3 type compounds. In addition, the bond charge expression is modified to a more reasonable form for complex crystals. (C) 1998 Elsevier Science B.V.
Resumo:
It has been found that the interaction between the two transition metal Mn, Co ions on B-site and their Redox property an the important factors influencing the NO-selectivity in ammonia oxidation. The NO-selectivity is related to the redox ability of Mn3+
Resumo:
Three series of samples LaMnyCo1-yO3+/-lambda, LaFeyMn1-yO3+/-lambda, and LaFeyCo1-yO3+/-lambda (y = 0.0 to 1.0) with Perovskite structure were prepared by an explosion method different from the generally used ceramic techniques. The variation of crystal