67 resultados para Goals orientation
Resumo:
Cubic GaN/GaAs(0 0 1) epilayers and hexagonal inclusions are characterized by X-ray diffraction (XRD), Photoluminescence (PL), Raman spectroscopy, and transmission electron microscopy (TEM). The X-ray {0 0 0 2} and (1 0 (1) over bar 0) pole figures show that the orientation relationships between cubic GaN and hexagonal inclusions are (1 1 1)//(0 0 0 1), <1 1 2 >//<1 0 (1) over bar 0 >. The distribution of hexagonal inclusions mainly results from the interfacial bonding disorder in the grain boundaries parallel to hexagonal <0 0 0 1 > directions and the lattice mismatch in <0 0 0 1 > directions on {1 0 (1) over bar 0} planes. In order to reduce the energy increase in cubic epilayers, hexagonal lamellas with smaller sizes in <0 0 0 1 > directions often nucleate inside the buffer layer or near the interface between the buffer layer and the epitaxial layer, and penetrate through the whole epitaxial layer with this orientation relationship. (C) 2001 Elsevier Science B.V. All rights reserved.
Influence of substrate orientation on In0.5Ga0.5As/GaAs quantum dots grown by molecular beam epitaxy
Resumo:
In this paper, In0.5Ga0.5As quantum dots are fabricated on GaAs (100) and (n11)A/B (n = 3, 5) substrates by molecular beam epitaxy. Atomic force microscopy shows that the quantum dots on each oriented substrate are different in size, shape and distribution. In addition, photoluminescence spectra from these quantum dots are different in emission peak position, line width and integrated intensity. Auger electron spectra demonstrate that In concentration is larger near the surface than inside quantum dots, suggesting the occurrence of surface segregation effect during the growth of InGaAs dots. The surface segregation effect is found to be related to substrate orientation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Within the dinuclear system model, the effects of the relative orientations of interacting deformed nuclei on the interaction potential energy surfaces, the evaporation residue cross sections of some cold fusion reactions leading to superheavy elements are investigated. The competition between fusion and quasifission is studied to show the effect of the orientation. It turns out that the belly-belly orientation is in favor of the production of superheavy nuclei, because in the case a barrier has suppressed the quasifission and thus helped fusion.
Resumo:
Fusion barriers have been calculated for different orientations of the axial symmetry axis of deformed projectile-and target-nucleus. Using the concept of dinuclear system, considering the strong competition between fusion and quasifission processes, by solving the master equation numerically to calculate the fusion probability of superheavy nuclei, we have estimated the dependence of the fusion probabilities for Ge-76 + Pb-208 and Ca-48 + Pu-244 on the orientation angles of the symmetry axis of projectile-and target-nucleus, which shows that belly-belly is the most favorable orientation for synthesizing superheavy nuclei.
Resumo:
The hallmark of materials science is the ability to tailor the structures of a given material to provide a desired response. In this work, the structures involving crystallinity and crystallographic orientation of Cu nanowires electrochemically fabricated in ion-track templates have been investigated as a function of fabrication condition. Both single crystalline and polycrystalline nanowires were obtained by adjusting applied voltages and temperatures of electrochemical deposition. The anti-Hall-Petch effect was experimentally evidenced in the polycrystalline nanowires. The dominant crystallographic orientations of wires along [111], [100], or [110] directions were obtained by selecting electrochemical deposition conditions, i.e., H2SO4 concentration in electrolyte, applied voltage, and electrodeposition temperature.
Resumo:
The expressions used for describing the angular distribution of oriented and aligned reagent molecules are derived. The algebraic forms of orientation and alignment parameters of molecules in the excited states are obtained for two-photon excitation. The reagent molecules after absorbing two-photon may produce the higher order orientation and alignment than doing one-photon. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The expressions used for controlling the alignment and orientation of reagent molecules are derived. The problem to the control of the orientation and alignment of reagent molecules by the polarization direction and propagation direction of laser is discussed.