75 resultados para Giant interactive displays
Resumo:
Longitudinal spin transport in diluted magnetic semiconductor superlattices is investigated theoretically. The longitudinal magnetoconductivity (MC) in such systems exhibits an oscillating behavior as function of an external magnetic field. In the weak magnetic-field region the giant Zeeman splitting plays a dominant role that leads to a large negative magnetoconductivity. In the strong magnetic-field region the MC exhibits deep dips with increasing magnetic field. The oscillating behavior is attributed to the interplay between the discrete Landau levels and the Fermi surface. The decrease of the MC at low magnetic field is caused by the s-d exchange interaction between the electron in the conduction band and the magnetic ions. The spin polarization increases rapidly with increasing magnetic field and the longitudinal current becomes spin polarized in strong magnetic field. The effect of spin-disorder scattering on MC is estimated numerically for low magnetic fields and found to be neglectible for our system.
Resumo:
Interactive intention understanding is important for Pen-based User Interface (PUI). Many works on this topic are reported, and focus on handwriting or sketching recognition algorithms at the lexical layer. But these algorithms cannot totally solve the problem of intention understanding and can not provide the pen-based software with high usability. Hence, a scenario-based interactive intention understanding framework is presented in this paper, and is used to simulate human cognitive mechanisms and cognitive habits. By providing the understanding environment supporting the framework, we can apply the framework to the practical PUI system. The evaluation of the Scientific Training Management System for the Chinese National Diving Team shows that the framework is effective in improving the usability and enhancing the intention understanding capacity of this system.
Resumo:
It is predicted that the Goos-Hanchen displacement in the usual frustrated total internal reflection configuration can be resonantly enhanced greatly by coating a dielectric thin film onto the surface of the first prism when the angle of incidence is larger than the critical angle for total reflection at the prism-vacuum interface and is smaller than but close to the critical angle for total reflection at the prism-film interface. Theoretical analysis shows that the displacement of transmitted beam is about half the displacement of reflected beam in the thick limit of the vacuum gap between the two prisms. This is to be compared with the relation in the usual symmetric double-prism configuration that the displacement of transmitted beam is equal to the displacement of reflected beam. Numerical simulations for a Gaussian incident beam of waist width of 100 wavelengths reveal that when the dielectric thin film is of the order of wavelength in thickness, both the reflected and transmitted beams maintain well the shape of the incident beam in the thick limit of the vacuum gap. So largely enhanced displacements would lead to applications in optical devices and integrated optics. (c) 2007 American Institute of Physics.
Resumo:
We have observed periodic current and capacitance oscillations with increasing bias on doped GaAs/AlAs superlattices at a temperature of 77 K. The maximum of the observed capacitance is larger than usual geometric capacitances in superlattices, being comparable to the quantum capacitance of the two-dimensional (2D) electron system proposed by Luryi. A model based on well-to-well sequential resonant tunneling due to the movement of the boundary between the electric field domains in superlattice was proposed to explain the origin of the giant capacitance oscillations. It was demonstrated that the capacitance at the peaks of capacitance-voltage (C-V) characteristics reflects the quantum capacitance of the space-charge region at the boundary between the domains (a novel 2D electron system).
Resumo:
The isoscalar giant monopole resonance (ISGMR) in nuclei is studied in the framework of a fully consistent relativistic continuum random phase approximation (RCRPA). In this method the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function technique. The negative energy states in the Dirac sea are also included in the single particle Green's function in the no-sea approximation. The single particle Green's function is calculated numerically by a proper product of the regular and irregular solutions of the Dirac equation. The strength distributions in the RCRPA calculations, the inverse energy-weighted sum rule m(-1) and the centroid energy of the ISGMR in Sn-120 and Pb-208 are analysed. Numerical results of the RCRPA are checked with the constrained relativistic mean field model and relativistic random phase approximation with a discretized spectrum in the continuum. Good agreement between them is achieved.