34 resultados para Gene Expression Regulation, Fungal
Resumo:
Background: The model eukaryote, Tetrahymena thermophila, is the first ciliated protozoan whose genome has been sequenced, enabling genome-wide analysis of gene expression. Methodology/Principal Findings: A genome-wide microarray platform containing the predicted coding sequences (putative genes) for T. thermophila is described, validated and used to study gene expression during the three major stages of the organism's life cycle: growth, starvation and conjugation. Conclusions/Significance: Of the,27,000 predicted open reading frames, transcripts homologous to only,5900 are not detectable in any of these life cycle stages, indicating that this single-celled organism does indeed contain a large number of functional genes. Transcripts from over 5000 predicted genes are expressed at levels >5x corrected background and 95 genes are expressed at >250x corrected background in all stages. Transcripts homologous to 91 predicted genes are specifically expressed and 155 more are highly up-regulated in growing cells, while 90 are specifically expressed and 616 are up-regulated during starvation. Strikingly, transcripts homologous to 1068 predicted genes are specifically expressed and 1753 are significantly up-regulated during conjugation. The patterns of gene expression during conjugation correlate well with the developmental stages of meiosis, nuclear differentiation and DNA elimination. The relationship between gene expression and chromosome fragmentation is analyzed. Genes encoding proteins known to interact or to function in complexes show similar expression patterns, indicating that co-ordinate expression with putative genes of known function can identify genes with related functions. New candidate genes associated with the RNAi-like process of DNA elimination and with meiosis are identified and the late stages of conjugation are shown to be characterized by specific expression of an unexpectedly large and diverse number of genes not involved in nuclear functions.
Resumo:
Peroxinectin, a cell-adhesive hemoperoxidase that binds superoxide dismutase and mediates blood cells adhesion and migration in invertebrate, is believed to play an important role in cellular immune reaction. In this study, we reported a new peroxinectin gene homologue from Chinese shrimp Fenneropenaeus chinensis. Based on expressed sequence tags (ESTs) of haemocyte cDNA library, we cloned a 2,611 bps full-length cDNA of peroxinectin gene homologue encoded 801 amino acids. Motif scanning of the predicted polypeptide revealed a peroxidase domain and an integrin binding motif (Lys-Gly-Asp, KGD). Peroxinectin gene expressed constitutively in haemocyte as determined by quantitative real-time RT-PCR, the expression level varied following bacterial challenge. These findings suggested that peroxinectin expression is susceptible to exterior stimulus and maintains at a high expression level during bacterial infection.
Resumo:
Microarray technique was used to analyze the gene expression profiles of shrimp when they were challenged by WSSV and heat-inactivated Vibrio anguillarum, respectively. At 6 h post challenge (HPC), a total of 806 clones showed differential expression profile in WSSV-challenged samples, but not in Vibrio-challenged samples. The genes coding energy metabolism enzyme and structure protein were the most downregulated elements in 6 h post WSSV-challenged (HPC-WSSV) tissues. However, a total of 155 clones showed differential expression in the Vibrio-challenged samples, but not in WSSV-challenged samples. Serine-type endopeptidase and lysosome-related genes were the most upregulated elements in tissues 6 h post Vibrio challenge (HPC-Vibrio). Totally, 188 clones showed differential expression in both 6 and 12 HPC-WSSV and HPC-Vibrio samples. Most of the differentially expressed genes (185/188) were downregulated in the samples of 12 HPC-WSSV, whereas upregulated in the samples at 6 and 12 HPC-Vibrio and 6 HPC-WSSV. The expression profiles of three differentially expressed genes identified in microarray hybridization were analyzed in hemocytes, lymphoid organ, and hepatopancreas of shrimp challenged by WSSV or Vibrio through real-time PCR. The results further confirmed the microarray hybridization results. The data will provide great help for us in understanding the immune mechanism of shrimp responding to WSSV or Vibrio.
Resumo:
Heat shock proteins (Hsps) are molecular chaperones that help organisms cope with stressful conditions. Here, we report on the growth rates and Hsp70 expressions in inbred and hybrid populations of abalone Haliotis discus hannai Ino. In abalone, inbred populations expressed more Hsp70 than hybrid populations at all temperatures, except at very high temperatures close to the physiological limit. At benign temperatures, there was a clear trend towards higher Hsp70 expression in inbred than hybrid populations, whereas at higher temperatures, a trend in the opposite direction was observed. The temperature of maximal Hsp70 expression (T-peak) varied with the population type. The T-peak of inbred populations (26 degrees C) was lower than that of the hybrid populations (28 degrees C). The maximal inducible Hsp70 of inbred populations was higher than that of hybrid populations. The results showed a trend towards higher expression in inbred population at a lower temperature. These results provide direct experimental evidence that hybrids can cope with the intrinsic stress even at non-stressful temperatures. The constitutive Hsp70 may therefore be used for marker-assisted selection in a breeding programme.