88 resultados para Environmental transformations
Resumo:
Based on a long-term ecological monitoring, the present study chose the most dominant benthic macroinvertebrate (Baetis spp.) as target organisms in Xiangxi River, built the habitat suitability models (HSMs) for water depth, current velocity and substrate, respectively, which is the first aquatic organisms model for habitat suitability in the Chinese Mainland with a long-term consecutive in situ measurement. In order to protect the biointegrity and function of the river ecosystem, the theory system of instream environmental flow should be categorized into three hierarchies, namely minimum required instream flow (hydrological level), minimum instream environmental flow (biospecies level), and optimum instream environmental flow (ecosystem level). These three hierarchies of instream environmental flow models were then constructed with the hydrological and weighted usable area (WUA) method. The results show that the minimum required instream flow of Xiangxi River calculated by the Tennant method (10% of the mean annual flow) was 0.615 m(3) s(-1); the minimum instream environmental flow accounted for 19.22% of the mean annual flow (namely 1.182 m(3) s(-1)), which was the damaged river channel. ow in the dry season; and 42.91% of the mean annual flow (namely 2.639 m(3) s(-1)) should be viewed as the optimum instream environmental flow in order to protect the health of the river ecosystem, maintain the instream biodiversity, and reduce the impact of small hydropower stations nearby the Xiangxi River. We recommend that the hydrological and biological methods can help establish better instream environmental. ow models and design best management practices for use in the small hydropower station project. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Genetic diversity of the plankton community in Lake Xiliang was depicted by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting. Seventy-seven bands (33 of 16S rDNA and 44 of 18S rDNA) were detected, sixty-two planktonic taxa were identified in six sample stations in November 2007. The most common taxa were Ceratium hirundinella, Bdelloidea, Keratella cochlearis, Polyarthra trigla, and copepod nauplii. Based on environmental factors, taxonomic composition, and PCR-DGGE fingerprinting, unweighted pair-group method using arithmetic averages clustering and principal components analysis were used to analyze habitat similarities. There was distinct spatial heterogeneity in Lake Xiliang, and the genetic diversity of the plankton community was closely related to taxonomic composition and environmental factors.
Resumo:
To explore the relationships between community composition and the environment in a reservoir ecosystem, plankton communities from the Three Gorges Reservoir Region were studied by PCR-denaturing gradient gel electrophoresis fingerprinting. Bacterial and eukaryotic operational taxonomic units (OTUs), generated by DGGE analysis of the PCR-amplified 16S and 18S rRNA genes, were used as surrogates for the dominant "biodiversity units". OTU composition among the sites was heterogeneous; 46.7% of the total bacteria] OTUs (45) and 64.1% of the eukaryotic OTUs (39) were identified in less than half of the sampling sites. Unweighted pair group method with arithmetic averages (UPGMA) clustering of the OTUs suggested that the plankton communities in the Xiangxi Rive sites were not always significantly different from those from the Yangtze River sites, despite clear differences in their environmental characterizations. Canonical correspondence analysis (CCA) was applied to further investigate the relationships between OTU composition and the environmental factors. The first two CCA ordination axes suggested that the bacterial community composition was primarily correlated with the variables of NO3--N, dissolved oxygen (DO), and SiO32--Si, whereas, the eukaryotic community was mainly correlated with the concentrations of DO, PO43--P, and SiO32--Si.
Resumo:
Microcystin (MC) problem made more and more care about in China, intercellular MC (Int-MC) and cellular MC (Cel-MC) were important contents to reflect the producing-MC ability by cyanobacteria and by lakes. To study the correlations between Int-MC, Cel-MC concentration and biological and environmental factors, eight cyanobacterial blooming lakes were studied in the middle and lower reaches of the Yangtze River. Microcystin-RR (MC-RR) and Microcystin-LR (MC-LR) were the primary toxin variants in our data. From the linear correlations between MC and environmental factors, cellular-YR had significant correlation with most of chemical factors except total nitrogen (TN) and the ratio of total nitrogen and total phosphorus (TN/TP), most intracellular MC analogues had significant correlations with total dissolved nitrogen (TDN), ammonium (NH4+), nitrite (NO2-), TP, total dissolved phosphorus (TDP), Microcystis. From the canonal correspondence analysis, Int-MC concentrations were closely related with the chemical and biological factors, such as TP, total organic carbon (TOC), chlorophyll a (Chl a), Microcystis biomass, et al. While Cel-MC contents, especially Cel-RR and Cel-LR, were closely related with light environmental in the lakes such as water depth and transparence.
Resumo:
A novel chemiluminescent immunoassay method based on gold nanoparticles was developed for the detection of microcystins (MCs). The immunoassay included three main steps: indirect competitive immunoreaction, oxidative dissolution of gold nanoparticles, and indirect determination for MCs with Au3+-catalysed luminol chemiluminesent system. The method has a wide working range (0.05-10 mu g L-1, r(2) = 0.9914), the limit of detection was determined to be 0.024 mu g L-1, which is much lower than the World Health Organization's proposed guidelines (1 mu g L-1) for drinking-water. The proposed method was applied to MC analysis in natural water and fish tissue samples, and most results in the proposed method were in agreement with the conventional indirect competitive enzyme-linked immunosorbent assay method, which indicated that the new chemiluminescent immunoassay was sensitive, reliable, and suitable for MC analysis in natural water and fish tissue samples.
Resumo:
Laboratory and field investigations were conducted to study the food habit of Chinese perch Siniperca chuatsi (Basilewsky) from first feeding through adult stage. Only fish larvae were consumed by Chinese perch larvae (2-21 days from hatching), and the presence of zooplankton did not have any significant effect on their survival rate. The ability of Chinese perch to feed on zooplankton is clearly limited by some innate factor. Instead of gill rakers, Chinese perch larvae have well-developed sharp teeth at the first feeding stage, and are well adapted to the piscivorous feeding habit unique to the larvae of Chinese perch, e.g. they bite and ingest the tails of other fish larvae. At the first feeding stage (2 days from hatching), daily rations were both very low, either in light or complete darkness. Although early-staged Chinese perch larvae (7-17 days from hatching) could feed in complete darkness, their daily rations were always significantly higher in light than in complete darkness. Late-staged Chinese perch larvae (21 days from hatching) were able to feed in complete darkness as well as in light, similar to the case of Chinese perch yearlings. Chinese perch yearlings (total length, 14-16 cm) consumed prey fish only and refused shrimp when visual cues were available (in light), but they consumed both prey when visual cues were not available (in complete darkness), suggesting that prey consumption by Chinese perch yearlings is affected by their sensory modality in predation. Both prey were found in the stomachs of similar-sized Chinese perch (total length, 14-32 cm) from their natural habitat, suggesting that shrimp are consumed by Chinese perch at night. Prey selection of Chinese perch with a length >38 cm, which consumed only fish in the field, appears to be based upon prey size instead of prey type. These results suggest that although environmental factors (e.g. light intensity) affect prey detection by Chinese perch, this fish is anatomically and behaviourally predisposed to prey on live fish from first feeding. This makes it a difficult fish to cultivate using conventional feeds.
Resumo:
To collect information about the genetic diversity of the plankton community and to study how plankton respond to environmental conditions, plankton samples were collected from five stations representing different trophic levels in a shallow, eutrophic lake (Lake Donghu), and investigated by PCR-DGGE fingerprinting. A total of 100 bands (61 of 16S rDNA bands and 39 of 18S rDNA bands) were detected. The DGGE bands unique to any single station accounted for 38% of the total bands, whereas common bands detected at all five stations accounted for only 11%. Using UPGMA clustering and MDS ordination of DGGE fingerprints, stations I and II were found to initially group together into one cluster, which was later joined by station V. Stations III and IV were isolated into two separate groups of one station each. Some differences in grouping relationships were found when analysis was completed on the basis of chemical characteristics and morphological composition, with zooplankton composition showing the greatest variability. However, the most similar stations (I and II) were always initially grouped into one cluster. Moreover, stations that exhibited the same or similar trophic level (stations III and IV), but different concentrations of heavy metals, were further differentiated by the DGGE method. Results of the present study indicated that PCR-DGGE fingerprinting was more sensitive than the traditional methods, as other studies suggested. Additionally, PCR-DGGE appears to be more appropriate for diversity characterization of the plankton community, as it is more canonical, systematic, and effective. Most importantly, fingerprinting results are more convenient for the comparative analyses between different studies. Therefore, the use of the described fingerprinting analysis may provide an operable and sensitive biomonitoring approach to identify critical, and potentially negative, stress within an aquatic ecosystem.
Resumo:
For the purpose of understanding the environmental fate of microcystins (MCs) and the potential health risks caused by toxic cyanobacterial blooms in Lake Taihu, a systematic investigation was carried out from February 2005 to January 2006. The distribution of MCs in the water column, and toxin bioaccumulations in aquatic organisms were surveyed. The results suggested that Lake Taihu is heavily polluted during summer months by toxic cyanobacterial blooms (with a maximum biovolume of 6.7 x 10(8) cells/L) and MCs. The maximum concentration of cell-bound toxins was 1.81 mg/g (DW) and the dissolved MCs reached a maximum level of 6.69 mu g/L. Dissolved MCs were always found in the entire water column at all sampling sites throughout the year. Our results emphasized the need for tracking MCs not only in the entire water column but also at the interface between water and sediment. Seasonal changes of MC concentrations in four species of hydrophytes (Eichhornic crassipes, Potamogeton maackianus, Alternanthera philoxeroides and Myriophyllum spicatum) ranged from 129 to 1317, 147 to 1534, 169 to 3945 and 124 to 956 ng/g (DW), respectively. Toxin accumulations in four aquatic species (Carassius auratus auratu, Macrobrachium nipponensis, Bellamya aeruginosa and Cristaria plicata) were also analyzed. Maximum toxin concentrations in the edible organs and non-edible visceral organs ranged from 378 to 730 and 754 to 3629 ng/g (DW), respectively. Based on field studies in Lake Taihu, risk assessments were carried out, taking into account the WHO guidelines and the tolerable daily intake (TDI) for MCs. Our findings suggest that the third largest lake in China poses serious health threats when serving as a source of drinking water and for recreational use. In addition, it is likely to be unsafe to consume aquatic species harvested in Lake Taihu due to the high-concentrations of accumulated MCs. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Environmental mechanism of change in cyanobacterial species composition in the northeastern part of Lake Dianchi (also called Macun Bay and Haidong Bay) was studied using canonical correlation analysis (CCA), but also bottom-up control and top-down control were fully discussed. Results from CCA suggest: (1) the abundance and dominance of Microcystis aeruginosa in Macun Bay and Haidong Bay are influenced by total phosphorus (TP), nitrate (NO3--N), nitrite (NO2--N), dissolved oxygen (DO) and water temperature (WT); (2) water temperature has a positive correlation with the abundance of M. aeruginosa and it also has negative correlations with the abundances of Anabaena flos-aquae and Aphanizomenonon flos-aquae; and (3) abundances of both Anabaena flos-aquae and Aphanizomenon flos-aquae have positive correlations with ammonia-N (NH4+-N). Furthermore, cyanobacterial species composition has no significant correlations with light and size-fractioned iron in this study. Grazers, cyanophages and viruses were able to control cyanobacterial blooms and change the composition of cyanobacterial species. Though we studied physical and chemical factors intensely enough, we still are not able to predict the change in the composition of cyanobacterial blooms, because of plankton system in a chaotic behavior.
Resumo:
1. A survey of 30 subtropical shallow lakes in the middle and lower reaches of the Yangtze River area in China was conducted during July-September in 2003-2004 to study how environmental and biological variables were associated with the concentration of the cyanobacterial toxin microcystin (MC). 2. Mean MC concentration in seasonally river-connected lakes (SL) was nearly 33 times that in permanently river-connected lakes (RL), and more than six times that in city lakes (NC) and non-urban lakes (NE) which were not connected to the Yangtze River. The highest MC (8.574 mu g L-1) was detected in Dianshan Lake. 3. MC-RR and MC-LR were the primary toxin variants in our data. MC-RR, MC-YR and MC-LR were significantly correlated with Ch1 a, biomass of cyanobacteria, Microcystis and Anabaena, indicating that microcystins were mainly produced by Microcystis and Anabaena sp. in these lakes. 4. Nonlinear interval maxima regression indicated that the relationships of Secchi depth, total nitrogen (TN) : total phosphorus UP) and NH4+ with MC were characterised by negative exponential curves. The relationships between MC and TN, TP, NO3- + NO2- were fitted well with a unimodal curve. 5. Multivariate analyses by principal component and classifying analysis indicated that MC was mainly affected by Microcystis among the biological factors, and was closely related with temperature among physicochernical factors.
Resumo:
A simple, rapid and sensitive on-line method for simultaneous determination of four endocrine disruptors (17 beta-estradiol, estriol, bisphenol A and 17 alpha-ethinylestradiol) in environmental waters was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). A poly(acrylamide-vinylpyridine-NAP-methylene bisacrylamide) monolith, synthesized inside a polyether ether ketone (PEEK) tube, was selected as the extraction medium. To achieve optimum extraction performance, several parameters were investigated, including extraction flow-rate, extraction time, and pH value, inorganic salt and organic solvent content of the sample matrix. By simply filtered with nylon membrane filter and adjusting the pH of samples to 6.0 with phosphoric acid, the sample solution then could be directly injected into the device for extraction. Low detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method were achieved in the range of 0.006-0.10 ng/mL and 0.02-0.35 ng/mL from spiked lake waters, respectively. The calibration curves of four endocrine disruptors showed good linearity ranging from quantification limits to 50 ng/mL with a linear coefficient R-2 value above 0.9913. Good method reproducibility was also found by intra- and inter-day precisions, yielding the RSDs less than 12 and 9.8%, respectively. Finally, the proposed method was successfully applied to the determination of these compounds in several environmental waters. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Man-made desert algal crusts were constructed on a large scale (3000m(2)) in Inner Mongolia, China. Microcoleus vaginatus was mass cultivated and inoculated directly onto unconsolidated sand dune and irrigated by automatic sprinkling micro-irrigation facilities. The crusts were formed in a short time and could resist the erosion of winds and rainfalls 22 days after inoculation. The maximum biomass in the man-made algal crusts could also reach 35 mu g Chl a/cm(2) of soil. Effects of environmental factors such as temperature, irrigation, rainfall and soil nutrients on algal biomass of man-made algal crusts were also studied. It was found that rainfalls and lower light intensity had significantly positive effects on the biomass of man-made algal crusts. The preliminary results suggested that man-made algal crusts could be formed rapidly, and thus it might be a new feasible alternative method for fixing unconsolidated sand. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
To observe changes in the concentrations of size-fractionated iron and related environmental factors, experiments were conducted in the northeastern part of the shallow eutrophic lake Dianchi (China) from March 2003 to February 2004. Iron concentrations were measured for three size fractions: particulate iron (phi >0.22 mu m), colloidal iron (phi = 0.025-0.22 mu m) and soluble iron (phi < 0.025 mu m), and environmental factors (physicochemical and biological factors) were synchronously analyzed. Results showed that size-fractionated iron and the related environmental factors all varied with season. Colloidal iron accounted for only 5-9% of total iron, while particulate and soluble iron each accounted for 40-50% of total iron. The results suggested that size-fractionated iron can transform into each other, especially the highly reactive colloidal iron. Significant linear correlations were found between iron in different size fractions, and significant correlations were also obtained between chlorophyll a and environmental factors, such as TN, TP and secchi depth. No significant correlation between iron and chlorophyll a was found in this study.
Resumo:
Nannochloropsis sp. was grown with different levels of nitrate, phosphate, salinity and temperature with CO2 at 2,800 mu l l(-1). Increased levels of NaNO3 and KH2PO4 raised protein and polyunsaturated fatty acids (PUFAs) contents but decreased carbohydrate, total lipid and total fatty acids (TFA) contents. Nannochloropsis sp. grew well at salinities from 22 to 49 g l(-1), and lowering salinity enhanced TFA and PUFAs contents. TFA contents increased with the increasing temperature but PUFAs contents decreased. The highest eicosapentaenoic acid (EPA, 20:5 omega 3) content based on the dry mass was above 3% under low N (150 mu M NaNO3) or high N (3000 mu M NaNO3) condition. Excessive nitrate, low salinity and temperature are thus favorable factors for improving EPA yields in Nannochloropsis sp.
Resumo:
According to outdated paradigms humic substances (HS) are considered to be refractory or inert that do not directly interact with aquatic organisms. However, they are taken up and induce biotransformation activities and may act as hormone-like substances. In the present study, we tested whether HS can interfere with endocrine regulation in the amphibian Xenopus laevis. In order to exclude contamination with phyto-hormones, which may occur in environmental isolates, the artificial HS 1500 was applied. The in vivo results showed that HS 1500 causes significant estrogenic effects on X. laevis during its larval development and results of semi-quantitative RT-PCR revealed a marked increase of the estrogenic biomarker estrogen receptor mRNA (ER-mRNA). Furthermore, preliminary RT-PCR results showed that the thyroid-stimulating hormone (TSH beta-mRNA) is enhanced after exposure to HS1500, indicating a weak adverse effect on T3/T4 availability. Hence, HS may have estrogenic and anti-thyroidal effects on aquatic animals, and therefore may influence the structure of aquatic communities and they may be considered environmental signaling chemicals. (c) 2005 Elsevier Ltd. All rights reserved.