164 resultados para Energy levels (Quantum mechanics)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structures in the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels and optical transition energies are calculated. In our calculation, the effect of finite offset, valence-band mixing, the effects due to the different effective masses of electrons and holes in different regions, and the real quantum dot structures are all taken into account. The results show that (1) electronic energy levels decrease monotonically, and the energy difference between the energy levels increases as the GaAs quantum dot (QD) height increases; (2) strong state mixing is found between the different energy levels as the GaAs QD width changes; (3) the hole energy levels decrease more quickly than those of the electrons as the GaAs QD size increases; (4) in excited states, the hole energy levels are closer to each other than the electron ones; (5) the first heavy- and light-hole transition energies are very close. Our theoretical results agree well with the available experimental data. Our calculated results are useful for the application of the hierarchical self-assembly of GaAs/AlxGa1-xAs quantum dots to photoelectric devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the electronic structure of vertically assembled quantum discs in a magnetic field with varying orientation using the effective mass approximation. We calculate the four energy levels of single-electron quantum discs and the two lowest energy levels of two-electron quantum discs in a magnetic field with varying orientation. The change of the magnetic field as an effective potential strongly modifies the electronic structure, leading to splittings of the levels and anticrossings between the levels. The calculated results also demonstrate the switching between the ground states with the total spin S = 0 and 1. The switching induces a qubit controlled by varying the orientation of the magnetic field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-consistent calculation of the subband energy levels of n-doped quantum wells is studied. A comparison is made between theoretical results and experimental data. In order to account for the deviations between them, the ground-state electron-electron exchange interactions, the ground-state direct Coulomb interactions, the depolarization effect, and the exciton-like effect are considered in the simulations. The agreement between theory and experiment is greatly improved when all these aspects are taken into account. The ground-to-excited-state energy difference increases by 8 meV from its self-consistent value if one considers the depolarization effect and the exciton-like effect only. It appears that the electron-electron exchange interactions account for most of the observed residual blueshift for the infrared intersubband absorbance in AlxGa1-xN/GaN multiple quantum wells. It seems that electrons on the surface of the k-space Fermi gas make the main contribution to the electron-electron exchange interactions, while for electrons further inside the Fermi gas it is difficult to exchange their positions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference DeltaE between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structures of N quantum dot molecules (QDMs) are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels are calculated. In the calculations, the effects of finite offset and valence-band mixing are taken into account. The theoretical method can be used to calculate the electronic structures of any QDM. The results show that (1) electronic energy levels decrease monotonically and the energy difference between the N QDMs decreases as the quantum dot (QD) radius increases; (2) the electron energy level is lower and quantum confinement is smaller for the larger N QDM; (3) the hole ground state energy level is lower for the one dot QDM than N (greater 1) QDMs if the QD radius is larger than about 5 nm due to the valence-band mixing. The results are useful for the application of the N QDM to photoelectric devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles methods, we have systematically calculated the defect formation energies and transition energy levels of group-III and group-V impurities doped in H passivated Si quantum dots (QDs) as functions of the QD size. The general chemical trends found in the QDs are similar to that found in bulk Si. We show that defect formation energy and transition energy level increase when the size of the QD decreases; thus, doping in small Si QDs becomes more difficult. B-Si has the lowest acceptor transition energy level, and it is more stable near the surface than at the center of the H passivated Si QD. On the other hand, P-Si has the smallest donor ionization energy, and it prefers to stay at the interior of the H passivated Si QD. We explained the general chemical trends and the dependence on the QD size in terms of the atomic chemical potentials and quantum confinement effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the effective-mass model and the mean-field approximation, we investigate the energy levels of the electron and hole states of the Mn-doped ZnO quantum wires (x=0.0018) in the presence of the external magnetic field. It is found that either twofold degenerated electron or fourfold degenerated hole states split in the field. The splitting energy is about 100 times larger than those of undoped cases. There is a dark exciton effect when the radius R is smaller than 16.6 nm, and it is independent of the effective doped Mn concentration. The lowest state transitions split into six Zeeman components in the magnetic field, four sigma(+/-) and two pi polarized Zeeman components, their splittings depend on the Mn-doped concentration, and the order of pi and sigma(+/-) polarized Zeeman components is reversed for thin quantum wires (R < 2.3 nm) due to the quantum confinement effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the geometrical shape on two electrons confined in a two-dimensional parabolic quantum dot and subjected to an external uniform magnetic field have been calculated using a variational-perturbation method based on a direct construction of trial wave functions. The calculations show that both the energy levels and the spin transition of two electrons in elliptical quantum dots are dramatically influenced by the shape of the dots. The ground states with total spin S=0 and S=1 are affected greatly by changing the magnetic field and the geometrical confinement. The quantum behavior of elliptical quantum dots show some relation to that of laterally coupled quantum dots. For a special geometric configuration of the confinement omega(y)/omega(x)=2.0, we encounter a characteristic magnetic field at which spin singlet-triplet crossover occurs. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We deduce the eight-band effective-mass Hamiltonian model for a manganese-doped ZnSe quantum sphere in the presence of the magnetic field, including the interaction between the conduction and valence bands, the spin-orbit coupling within the valence bands, the intrinsic spin Zeeman splitting, and the sp-d exchange interaction between the carriers and magnetic ion in the mean-field approximation. The size dependence of the electron and hole energy levels as well as the giant Zeeman splitting energies are studied theoretically. We find that the hole giant Zeeman splitting energies decrease with the increasing radius, smaller than that in the bulk material, and are different for different J(z) states, which are caused by the quantum confinement effect. Because the quantum sphere restrains the excited Landau states and exciton states, in the experiments we can observe directly the Zeeman splitting of basic states. At low magnetic field, the total Zeeman splitting energy increases linearly with the increasing magnetic field and saturates at modest field which is in agreement with recent experimental results. Comparing to the undoped case, the Zeeman splitting energy is 445 times larger which provides us with wide freedom to tailor the electronic structure of DMS nanocrystals for technological applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of effective mass envelope function theory, the electronic structures of GaAs/AlxGa1-xAs quantum double rings(QDRs) are studied. Our model can be used to calculate the electronic structures of quantum wells, wires, dots, and the single ring. In calculations, the effects due to the different effective masses of electrons and holes in GaAs and AlxGa1-xAs and the valence band mixing are considered. The energy levels of electrons and holes are calculated for different shapes of QDRs. The calculated results are useful in designing and fabricating the interrelated photoelectric devices. The single electron states presented here are useful for the study of the electron correlations and the effects of magnetic fields in QDRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The eight-band effective-mass Hamiltonian of the free-standing narrow-gap InAs quantum ellipsoids is developed, and the electron and hole electronic structures as well as optical properties are calculated by using the model. The energies, wave functions and transition probabilities of quantum spheres as functions of the radius of quantum sphere R is presented. It is found that the energy levels do not vary as 1/R-2, which is caused by the coupling between the conduction and valence bands, and by the constant terms correspond to the spin-orbit splitting energy. The blueshifts of hole states depend strongly on the coupling from electron states, so that the order of hole states changes as has been predicted in experiment. The exciton binding energies are calculated, the calculated excitonic gaps as functions of the ground exciton transition energy are in good agreement with the photoluminescence measured spectra in details. Finally, the hole energy levels and the linear polarization factors in InAs quantum ellipsoids as functions of the aspect ratio are presented. The state 1S(Z up arrow)((1/2)) becomes the hole ground state when e is larger than 2.4. The saturation value of the linear polarization factors of the InAs long ellipsoids of diameter 2.0 nm is 0.86, in agreement with the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magneto-transport measurements have been carried out on a Si heavily delta-doped In0.52Al0.48As/In(0.53)G(0.47)As single quantum well in the temperature range between 1.5 and 60 K under magnetic field up to 10 T. We studied the Shubnikov-de Haas(SdH) effect and the Hall effect for the In0.52Al0.48As/In(0.53)G(0.47)As single quantum well occupied by two subbands, and have obtained the electron concentration, mobility, effective mass and energy levels respectively. The electron concentrations of the two subbands derived from mobility spectrum combined with multi-carrier fitting analysis are well consistent with the result from the SdH oscillation. From fast Fourier transform analysis for d(2)rho/dB(2)-1/B, it is observed that there is a frequency of f(1)-f(2) insensitive to the temperature, besides the frequencies f(1), f(2) for the two subbands and the frequency doubling 2f(1), both dependent on the temperature. This is because That the electrons occupying the two different subbands almost have the same effective mass in the quantum well and the magneto-intersubband scattering between the two subbands is strong.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the effective-mass and adiabatic approximations, by setting the effective-mass of electron in the quantum disks (QDs) different from that in the potential barrier material, we make some improvements in the calculation of the electronic energy levels of vertically stacked self-assembled InAs QD. Comparing with the results when an empirical value was adopted as the effective-mass of electron of the system, we can see that the higher levels become heightened. Furthermore, the Stark shifts of the system of different methods are compared. The Stark shifts of holes are also studied. The vertical electric field changes the splitting between the symmetric level and the antisymmetric one for the same angular momentum. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the electronic energy levels and probability distribution of vertically stacked self-assembled InAs quantum discs system in the presence of a vertically applied electric field. This field is found to increase the splitting between the symmetric and antisymmetric levels for the same angular momentum. The field along the direction from one disc to another affects the electronic energy levels similarly as that in the opposite direction because the two discs are identical. It is obvious from our calculation that the probability of finding an electron in one disc becomes larger when the field points from this disc to the other one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double X-ray diffraction has been used to investigate InGaAs/InAlAs quantum cascade (QC) laser grown on InP substrate by molecule beam epitaxy, by means of which, excellent lattice matching, the interface smoothness, the uniformity of the thickness and the composition of the epilayer are disclosed. What is more, these results are in good agreement with designed value. The largest lattice mismatch is within 0.18% and the intersubband absorption wavelength between two quantized energy levels is achieved at about lambda = 5.1 mum at room temperature. At 77 K, the threshold density of the QC laser is less than 2.6 kA/cm(2) when the repetition rate is 5 kHz and the duty cycle is 1%. (C) 2003 Elsevier Science B.V. All rights reserved.