128 resultados para Electronic music


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the structural, elastic, and electronic properties of the cubic perovskite-type BaHfO3 using a first-principles method based on the plane-wave basis set. Analysis of the band structure shows that perovskite-type BaHfO3 is a wide gap indirect semiconductor. The band-gap is predicted to be 3.94 eV within the screened exchange local density approximation (sX-LDA). The calculated equilibrium lattice constant of this compound is in good agreement with the available experimental and theoretical data reported in the literatures. The independent elastic constants (C-11, C-12, and C-44), bulk modules B and its pressure derivatives B', compressibility beta, shear modulus G, Young's modulus Y, Poisson's ratio nu, and Lame constants (mu, lambda) are obtained and analyzed in comparison with the available theoretical and experimental data for both the singlecrystalline and polycrystalline BaHfO3. The bonding-charge density calculation make it clear that the covalent bonds exist between the Hf and 0 atoms and the ionic bonds exist between the Ba atoms and HfO3 ionic groups in BaHfO3. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic band structures and optical gains of InAs1-xNx/GaAs pyramid quantum dots (QDs) are calculated using the ten-band k . p model and the valence force field method. The optical gains are calculated using the zero-dimensional optical gain formula with taking into consideration of both homogeneous and inhomogeneous broadenings due to the size fluctuation of quantum dots which follows a normal distribution. With the variation of QD sizes and nitrogen composition, it can be shown that the nitrogen composition and the strains can significantly affect the energy levels especially the conduction band which has repulsion interaction with nitrogen resonant state due to the band anticrossing interaction. It facilitates to achieve emission of longer wavelength (1.33 or 1.55 mu m) lasers for optical fiber communication system. For QD with higher nitrogen composition, it has longer emission wavelength and less detrimental effect of higher excited state transition, but nitrogen composition can affect the maximum gain depending on the factors of transition matrix element and the Fermi-Dirac distributions for electrons in the conduction bands and holes in the valence bands respectively. For larger QD, its maximum optical gain is greater at lower carrier density, but it is slowly surpassed by smaller QD as carrier concentration increases. Larger QD can reach its saturation gain faster, but this saturation gain is smaller than that of smaller QD. So the trade-off between longer wavelength, maximum optical, saturation gain, and differential gain must be considered to select the appropriate QD size according to the specific application requirement. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3143025]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure and exciton states of cylindrical ZnO nanorods with radius from 2 to 6 nm are investigated based on the framework of the effective-mass theory. Using the adiabatic approximation, the exciton binding energies taking account of the dielectric mismatch are solved exactly when the total angular momentum of the exciton states L = 0 and L = +/- 1. We find that the exciton binding energies can be enhanced greatly by the dielectric mismatch and the calculated results are almost consistent with the experimental data. Meanwhile, we obtain the optical transition rule when the small spin-obit splitting Delta(so) of ZnO is neglected. Furthermore, the radiative lifetime and linear optical susceptibilities chi(w) of the exciton states are calculated theoretically. The theoretical results are consistent with the experimental data very well. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3125456]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of the electronic energy levels on the size of quantum dots (QDs) with the shape of spherical lens is studied by using the B-spline technique for the first time. Within the framework of the effective-mass theory, the values of electronic energy levels are obtained as a function of the height, radius and volume of QDs, respectively. When the height or radius of QDs increases, all the electronic energy levels lower, and the separations between the energy levels decrease. For lens-shape QDs, height is the key factor in dominating the energy levels comparing with the effect of radius, especially in dominating the ground-state level. These computational results are compared with that of other theoretical calculation ways. The B-spline technique is proved to be an effective way in calculating the electronic structure in QDs with the shape of spherical lens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the effective-mass model, the lower energies of the electron and the hole of ZnO/MgxZn1-xO superlattices are calculated. Because of the mismatch of the lattice constant between the ZnO well and the MgxZn1-xO barrier, piezoelectric and spontaneous polarization exist in ZnO/MgxZn1-xO superlattices and a macroscopical internal electric held is found when well width L-w >4 nm and Mg concentration x > 0.2. The parameters of ZnO/MgxZn1-xO superlattices such as lattice constant, band offset, etc. are also proposed. Through calculations, we found the internal electric field can change the lowest energies of the electron and hole to 105.4 and 85.1 meV when well width L-w up to 70 angstrom, which will influence the electronic and optical properties of ZnO/MgxZn1-xO superlattices greatly, while the Rashba effect from the internal electric field is so small that it can be neglected. The ground state exciton energies with different Mg concentration x are also calculated by variational method, our results are very close to the experimental results when Mg concentration x <= 0.3. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using first-principles molecular dynamics simulations, the displacement threshold energy and defect configurations are determined in SiC nanotubes. The simulation results reveal that a rich variety of defect structures (vacancies, Stone-Wales defects and antisite defects) are formed with threshold energies from 11 to 64 eV. The threshold energy shows an anisotropic behavior and exhibits a dramatic decrease with decreasing tube diameter. The electronic structure can be altered by the defects formed by irradiation, which suggests that the electron irradiation may be a way to use defect engineering to tailor electronic properties of SiC nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantum confinement effect, electronic properties, and optical properties of TiO2 nanowires in rutile structure are investigated via first-principles calculations. We calculate the size- and shape-dependent band gap of the nanowires and fit the results with the function E-g = E-g(bulk) + beta/d(alpha). We find that the quantum confinement effect becomes significant for d < 25 angstrom, and a notable anisotropy exists that arises from the anisotropy of the effective masses. We also evaluate the imaginary part of the frequency-dependent dielectric function [epsilon(2)(omega)] within the electric-dipole approximation, for both the polarization parallel [epsilon(parallel to)(2)(omega)] and the perpendicular [epsilon 1/2(omega)] to the axial (c) direction. The band structure of the nanowires is calculated, with which the fine structure of epsilon(parallel to)(2)(omega) has been analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tight-binding (TB) treatment with the inclusion of d orbitals is applied to the electronic structures of graphitic tubes. The results show that the high angular moment bases in TB scheme are necessary to account the severe curvature effect in ultra-thin single wall carbon nanotubes, especially for properly reproducing the band edge overlap behavior in (5, 0) tube, predicted by the existing ab initio calculations. In the large diameter limit, the participation of two synnmetry-allowed d bases provides a natural replication to the recent measured electronic dispersions of valence band of graphene when the strong anisotropy due to the two-dimensional planar hexagonal sheet structure is dealt with properly. In addition, the detailed relation between the two sets of quantum numbers of screw symmetry and that of zone folding is formulated in appendix. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomic and electronic structures of saturated and unsaturated GaN nanotubes along the [001] direction with (100) lateral facets are studied using first-principles calculations. Atomic relaxation of nanotubes shows that appreciable distortion occurs in the unsaturated nanotubes. All the nanotubes considered, including saturated and unsaturated ones, exhibit semiconducting, with a direct band gap Surface states arisen from the 3-fold-coordinated N and Ga atoms at the lateral facets exist inside the bulklike band gap. When the nanotubes are saturated with hydrogen, these dangling bond bands are removed from the band gap, but the band gap decreases with increasing the wall thickness of the nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the single-electron and two-electron vertically assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six energy levels of the single-electron quantum disks and the two lowest energy levels of the two-electron quantum disks in an axial magnetic field. The change of the magnetic field strongly modifies the electronic structures as an effective potential, leading to the splitting of the levels and the crossings between the levels. The effect of the vertical alignment on the electronic structures is discussed. It is demonstrated that the switching of the ground-state spin exists between S=0 and S=1. The energy difference DeltaE between the lowest S=0 and S=1 states is shown as a function of the axial magnetic field. It is also found that the variation of the energy difference between the lowest S=0 and S=1 states in the strong-B S=0 state is fairly linear. Our results provide a possible realization for a qubit to be fabricated by current growth techniques. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study theoretically the low-temperature electronic transport property of a straight quantum wire under the irradiation of a finite-range transversely polarized external terahertz (THz) electromagnetic (EM) field. Using the free-electron model and the scattering matrix approach, we show an unusual behaviour of the electronic transmission of this system. A sharp step-structure appears in the electronic transmission probability as the EM field strength increases to a threshold value when a coherent EM field is applied. We demonstrate that this effect physically comes from the inelastic scattering of electrons with lateral photons through intersubband transitions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study a single electron tunneling through a vertically stacked self-assembled quantum disks structure using a transfer matrix technique in the framework of effective mass approximation. In the disks, the electron is confined both laterally and vertically; we separate the motion in the vertical and lateral directions within the adiabatic approximation and treat the energy levels of the latter as an effective confining potential. The influence of a constant applied electric field is taken into account using an exact Airy-function formalism and the current density is calculated at zero temperature. By increasing the widths of the barriers, we find the peaks of the current density shift toward lower voltage region; meanwhile, they can become even sharper. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor nanostructures show many special physical properties associated with quantum confinement effects, and have many applications in the opto-electronic and microelectronic fields. However, it is difficult to calculate their electronic states by the ordinary plane wave or linear combination of atomic orbital methods. In this paper, we review some of our works in this field, including semiconductor clusters, self-assembled quantum dots, and diluted magnetic semiconductor quantum dots. In semiconductor clusters we introduce energy bands and effective-mass Hamiltonian of wurtzite structure semiconductors, electronic structures and optical properties of spherical clusters, ellipsoidal clusters, and nanowires. In self-assembled quantum dots we introduce electronic structures and transport properties of quantum rings and quantum dots, and resonant tunneling of 3-dimensional quantum dots. In diluted magnetic semiconductor quantum dots we introduce magnetic-optical properties, and magnetic field tuning of the effective g factor in a diluted magnetic semiconductor quantum dot. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have calculated the bond distributions and atom positions of GaAs/GalnNAsSb superlattices using Keating's semiempirical valence force field (VFF) model and Monte Carlo simulation. The electronic structures of the superlattices are calculated using folded spectrum method (FSM) combined with an empirical pseudopotential (EP) proposed by Williamson et al.. The effects of N and Sb on superlattice energy levels are discussed. We find that the deterioration of the optical properties induced by N can be explained by the localization of the conduction-band states around the N atom. The electron and hole effective masses of the superlattices are calculated and compared with the effective masses of the bulk GaAs and GaInAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using Keating's semiempirical valence force field model and Monte Carlo simulation, we calculate the bond distributions and atom positions of GaAs/GaInNAsSb superlattices. The electronic structures of the superlattices are calculated using the folded spectrum method combined with an empirical pseudopotential proposed by Williamson The effects of N and Sb on superlattice energy levels are discussed. The deterioration of the optical properties induced by N is explained by the localization of the conduction-band states around the N atom. The electron and hole effective masses of the superlattices are calculated and compared with the effective masses of the GaAs and GaInAs.