44 resultados para EPILEPSY-PRONE RATS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hypoxia and ischemia induce neuronal damage, decreased neuronal numbers and synaptophysin levels, and deficits in learning and memory functions. Previous studies have shown that lycium barbarum polysaccharide, the most effective component of barbary wolfberry fruit, has protective effects on neural cells in hypoxia-ischemia. OBJECTIVE: To investigate the effects of Naotan Pill on glutamate-treated neural cells and on cognitive function in juvenile rats following hypoxia-ischemia. DESIGN, TIME AND SETTING: The randomized, controlled, in vivo study was performed at the Cell Laboratory of Lanzhou University, Lanzhou Institute of Modern Physics of Chinese Academy of Sciences, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from December 2005 to August 2006. The cellular neurobiology, in vitro experiment was conducted at the Institute of Human Anatomy, Histology, Embryology and Neuroscience, School of Basic Medical Sciences, Lanzhou University, and Department of Traditional Chinese Medicine of Gansu Provincial Rehabilitation Center Hospital, China from March 2007 to January 2008. MATERIALS: Naotan Pill, composed of barbary wolfberry fruit, danshen root, grassleaf sweetflag rhizome, and glossy privet fruit, was prepared by Gansu Provincial Rehabilitation Center, China. Rabbit anti-synaptophysin, choline acetyl transferase polyclonal antibody, streptavidin-biotin complex kit and diaminobenzidine kit (Boster, Wuhan, China), as well as glutamate (Hualian, Shanghai, China) were used in this study. METHODS: Cortical neural cells were isolated from neonatal Wistar rats. Neural cell damage models were induced using glutamate, and administered Naotan Pill prior to and following damage. A total of 54 juvenile Wistar rats were equally and randomly assigned into model, Naotan Pill, and sham operation groups. The left common carotid artery was ligated, and then rat models of hypoxic-ischemic injury were assigned to the model and Naotan Pill groups. At 2 days following model induction, rats in the Naotan Pill group were administered Naotan Pill suspension for 21 days. In the model and sham operation groups, rats received an equal volume of saline. MAIN OUTCOME MEASURES: Neural cell morphology was observed using an inverted phase contrast microscope. Survival rate of neural cells was measured by MTT assay. Synaptophysin and choline acetyl transferase expression was observed in the hippocampal CA1 region of juvenile rats using immunohistochemistry. Cognitive function was tested by the Morris water maze. RESULTS: Pathological changes were detected in glutamate-treated neural cells. Neural cell morphology remained normal after Naotan Pill intervention. Absorbance and survival rate of neural cells were significantly greater following Naotan Pill intervention, compared to glutamate-treated neural cells (P < 0.05). Synaptophysin and choline acetyl transferase expression was lowest in the hippocampal CA1 region in the model group and highest in the sham operation group. Significant differences among groups were observed (P < 0.05). Escape latency and swimming distance were significantly longer in the model group compared to the Naotan Pill group (P < 0.05). CONCLUSION: Naotan Pill exhibited protective and repair effects on glutamate-treated neural cells. Naotan Pill upregulated synaptophysin and choline acetyl transferase expression in the hippocampus and improved cognitive function in rats following hypoxia-ischemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of H-1 NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. H-1 NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the Perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biochemical effects of gadolinium chloride were studied using high-resolution H-1 nuclear magnetic resonance (NMR) spectroscopy to investigate the biochemical composition of tissue (liver and kidney) aqueous extracts obtained from control and gadolinium chloride (GdCl3) (10 and 50 mg/kg body weight, intraperitoneal injection. i.p.) treated rats. Tissue samples were collected at 48, 96 and 168 h p.d. after exposure to GdCl3, and extracted using methanol/chloroform solvent system. H-1 NMR spectra of tissue extracts were analyzed by pattern recognition using principal components analysis. The liver damages caused by GdCl3 were characterized by increased succinate and decreased glycogen level and elevated lactate, alanine and betaine concentration in liver. Furthermore, the increase of creatine and lactate, and decrease of glutamate, alanine, phosphocholine, glycophosphocholine (GPC), betaine, myo-inositol and trimethylamine N-oxide (TMAO) levels in kidney illustrated kidney disturbance induced by GdCl3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic profiling of serum from gadolinium chloride (GdCl3, 10 and 50 mg/kg body weight, intraperitoneal [i.p.])-treated rats was investigated by the NMR spectroscopic-based metabonomic strategy. Serum samples were collected at 48, 96, and 168 h postdose (p.d.) after exposure to GdCl3. H-1 NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The studies showed that there was a dose-related biochemical effect of GdCl3 treatment on the levels of a range of low-molecular weight compounds in serum. The liver damage induced by GdCl3 was characterized by the elevation of lactate, pyruvate, and creatine as well as the decrease of branched-chain amino acids (valine and isoleucine), alanine, glucose, and trimethylamine-N-oxide concentration in serum samples. The biochemical effects of GdCl3 in rats could be consulted when evaluating the biochemical profile of gadolinium-containing compounds that are being developed for nuclear magnetic resonance imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subacute toxicity of aristolochic acid (AA) was investigated by H-1 NMR spectroscopic and pattern recognition (PR)-based metabonomic methods. Model toxins were used to enable comparisons of the urinary profiles from rats treated with known toxicants and AA at various time intervals. Urinary H-1 NMR spectra were data-processed and analyzed by pattern recognition method. The result of visual comparison of the spectra showed that AA caused a renal proximal tubular and papillary lesion and a slight hepatic impair. Pattern recognition analysis indicated that the renal proximal tubule lesion was the main damage induced by AA, and the renal toxicity induced by AA was a progressive course with the accumulation of dosage by monitoring the toxicological processes from onset, development and part-recovery. These results were also supported by the conventional clinical biochemical parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic profiles caused by rare earth complex were investigated using NMR and ICP-MS techniques. Male and female Wistar rats were treated orally with Changle (A kind of rare earth complex applied in agriculture to raise the production of crops) at dose of 2, 5 and 20 mg (.) kg(-1) body weight/day respectively for 90 d. Urine and serum samples are collected on 90 d. The relative concentrations of important endogenous metabolites in urine and serum are determined from H-1 NMR spectra and the contents of the four rare earth elements ( La, Ce, Pr and Nd) constituting Changle in the serum samples are measured by ICP-MS technique. Changle-induced renal and liver damage in rats is found based on the increase in the amounts of the amino acids, trimethylamine N-oxide, N, N-dimethyglycine, dimethylamine, succinate, aketoglutarate and ethanol as well as rare earth concentrations. The similarities and differentiations are found in the alteration patterns of metabolites and rare earth concentrations in serum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

H-1 NMR spectroscopy has been used to assess long-term toxicological effects of a rare earth. Male Wistar rats were administrated orally with La(NO3)(3) at doses of 0.1, 0.2, 2.0, 10, and 20 mg/kg body wt, resp., for 3-6 months. Urine was collected at 1, 2, and 3 months and serum samples were taken after 6 months. Numerous low-M-r metabolites in rats serum and rats urine, including creatinine, citrate, glucose, ketone bodies, trimethylamine N-oxide (TMAO), and various amino acids, were identified on 400- and 500-MHz H-1 NMR spectra. La3+-induced renal and liver damage is characterized by an increase in the amounts of the excreted ketone bodies, amino acids, lactate, ethanol, succinate, TMAO, dimethylamine, and taurine and a decrease in citrate, glucose, urea, and allantoin. Information on the molecular basis of the long-term toxicity of La(NO3)(3) was derived from the abnormal patterns of metabolite excretions. An assay of some biochemical indexes and analysis of some enzymes in plasma supported NMR results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high-field nuclear magnetic resonance (NMR) spectra can be used for the rapid multicomponent analysis in small amounts of biological fluids. In this paper, the effect of La (NO3)(3) on the rats' metabolism in urine was investigated by H-1 NMR analysis. The experimental groups of wistar rats were injected intraperitoneally with La(NO3)(3) at doses of 0.2, 2.0, 10 and 20mg/kg body weight. The remarkable variation of low molecular weight metabolites in urine has been identified by H-1 NMR spectra, in which dimethylamine, N, N-dimethylglycine, urea, alpha -ketoglutarate, trimethylamine N-oxide, succinate, citrate and amino acids have been suggested as NMR markers for renal damage and ethanol, lactate, taurine as the markers for liver damage. This work may assess its possible use in the early detection of biochemical changes associated with Rare Earth induced kidney and liver dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Male Wistar rats were administrated orally with La(NO3)(3) at doses of 0. 05, 0. 2, 2. 0, 10 and 20 mg/kg body weight. Urine was collected over a 24 h period after dosing. Resonances for a large number of low molecular weight metabolites were assigned in a high resolution H-1 NMR spectra of rat urine. The variation of some low molecular weight metabolites in urine provided a sensitive measurement of Rare Earth induced renal and liver lesions, in which DMA, DMG, urea, Kg, TMAO, succinate, citrate and amino acids have been suggested as NMR markers for renal damage and ethanol, lactate, taurine as the markers for liver damage. The method could be applicable to study of the toxicological effects of other compounds and drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fucoidans, the sulfated polysacchrides extracted from brown algae, have been extensively studied for their diverse biological activities. However, there is no detailed report investigating the toxicity of fucoidan. In this study, the acute and subchronic (6 months) toxicity of varying levels of fucoidan extracted from Laminaria japonica was investigated in Wistar rats after oral administration. The results showed that no significant toxicological changes were observed when 300 mg/kg body weight per day fucoidan was administered to rats. But when the dose was increased to 900 and 2500 mg/kg body weight per day, the clotting time was significantly prolonged. Besides this, no other signs of toxicity were observed. Based on these results, it can be concluded that the no adverse effect level of fucoidan from L. japonica is 300 mg/kg body weight per day. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator in insulin signaling pathways. PTP1B is an effective target for the treatment of type 2 diabetes mellitus. Four bromophenol derivatives from red algae Rhodomela confervoides, 2,2',3,3'-tetrabromo-4,4',5,5'-tetra-hydroxydiphenyl methane (1), 3-bormo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl) pyrocatechol (2), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (3) and 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxy-methyldiphenylmethane (4) showed significant inhibitory activity against PTP1B (IC50 were 2.4, 1.7, 1.5 and 0.84 mu mol/L, respectively) as potential therapeutical agents for the treatment of type 2 diabetes mellitus. The anti-hyperglycemic effects of the ethanol extracts from R. confervoides on streptozotocin-induced diabetes (STZ-diabetes) in male Wistar rats fed with high fat diet were investigated. The STZ-diabetic rats treated with medium-dose and high-dose alga extracts showed remarkable reductions in fasting blood glucose (FBG) as compared with the STZ-diabetic control. The results indicate that the in vivo anti-hyperglycemic activity of the R. confervoides extracts can be partially attributed to the inhibitory actions against PTP1B of the bromophenol derivatives and that may be of clinical importance in improving the management of type 2 diabetes mellitus.