217 resultados para ELECTRIC CHARGE
Resumo:
强外加电场与大调制度在光折变效应的研究中已经得到了广泛应用。采用PDECOL算法, 严格求解光折变带输运方程, 得到外加电场时不同调制度下光折变晶体中随时间变化的空间电荷场、载流子浓度, 并讨论了外加电场对它们的影响。通过将物质方程与耦合波方程联立数值求解, 可得到光折变光栅形成过程中两波耦合增益系数以及光束条纹相位的变化。模拟结果表明, 在强外加电场作用下, 两束记录光之间的光强与相位耦合都得到了增强, 而原有的解析式忽视了强外加电场与大调制度对空间电荷场相位耦合的影响, 此时不再适用。同时发现折射率光
Resumo:
Electrochromic phenomena accompanying the ferroelectric domain inversion in congruent RuO2-doped z-cut LiNbO3 crystals at room temperature are observed in experiments. During the electric poling process, the electrochromism accompanies the ferroelectric domain inversion simultaneously in the same poled area. The electrochromism is completely reversible when the domain is inverted from the reverse direction. The influences of electric field and annealing conditions on domain inversion and electrochromism are also discussed. We propose the reasonable assumption that charge redistribution within the crystal structure caused by domain inversion is the source for electrochemically oxidation and reduction of Ru ion to produce the electrochromic effect. (c) 2005 Optical Society of America.
Resumo:
The dependences of the recording properties of LiNbO3:Fe:Mn crystals on an external electric field (applied in the recording or fixing phase of the nonvolatile holographic recording process) are numerically investigated and the optimal conditions for applying an external electric field in this two-step process of nonvolatile holographic recording are discussed in detail. Significant improvement of the photorefractive performance has been found and experimental verifications using a small external electric field are described. Moreover, direct measures relating to the dominant photovoltaic mechanism in the doubly doped LiNbO3 crystals and the unconventional grating-enhanced fixing are revealed by applying an external electric field in the recording and the fixing phases, respectively.
Resumo:
By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.
Resumo:
The primary and secondary threshold intensities of ultraviolet-laser-induced preferential domain nucleation in nearly stoichiometric LiTaO3 is observed. The primary threshold is the minimum intensity to achieve the instantaneous preferential domain nucleation within the focus by the combined action of irradiation and electric fields. The secondary threshold is the minimum intensity to achieve the memory effect without any irradiation within the original focus. The space charge field created by the photoionization carriers is thought to be responsible for the instantaneous effect. The explanation based on the formation and transformation of extrinsic defect is presented for the memory effect. (c) 2008 American Institute of Physics.
Resumo:
The three-photon absorption effect (3PA) of two novel symmetrical charge transfer fluorene-based molecules (abbreviated as BASF and BMOSF) has been determined by using a Q-switched Nd:YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 84 x 10(-78) and 114 x 10(-78) cm(6) s(2), respectively. The geometries and electronic excitations of these two molecules are systematically studied by PM3 and ZINDO/S methods. The relationships between 3PA cross-sections and intramolecular charge transfer are discussed micromechanically. The experimental and theoretical results have shown that the larger intramolecular charge transfer, which was characterized by the charge density difference between the ground state (SO) and the first excited state (S-I), the greater enhancement of the 3PA cross-sections. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Three-photon absorption (3PA) of two fluorene-based molecules with D-pi-D structural motifs (abbreviated as BPAF and BCZF) has been determined by using a Q-switched Nd: YAG laser pumped with 38 ps pulses at 1064 nm in DMF. The measured 3PA cross-sections are 222 and 140 x 10(-78) cm(6) s(2) for BPAF and BCZF, respectively. AM1 calculations show that attaching different donors changes the charge density distribution of the fluorene skeleton, and it is observed that the 3PA cross-section can be enhanced with increasing intramolecular charge transfer character, measured by the parameter Delta p(1)/Delta p(2)/Delta p(1)'. (c) 2005 Elsevier B.V. All fights reserved.
Resumo:
One- and two-photon absorption properties of a series of fluorene derivatives with symmetrical charge transfer D-IT-D and A-IT-A structural motifs have been theoretically investigated with ZINDO/S method. The optimized structures and the characterization of frontier molecular orbitals were obtained by using AMI calculations. Two-photon absorption properties of molecules have been studied using three-state model. The calculation results have shown that fluorene-thiophene derivatives exhibit larger two-photon absorption cross-section as compared with other studied molecules. To illustrate the results, the crucial effects of thiophene ring on fluorenethiophene derivatives and the net charge changes on the pi-conjugated bridges are analyzed theoretically. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Within the framework of classic electromagnetic theories, we have studied the sign of refractive index of optical medias with the emphases on the roles of the electric and magnetic losses and gains. Starting from the Maxwell equations for an isotropic and homogeneous media, we have derived the general form of the complex refractive index and its relation with the complex electric permittivity and magnetic permeability, i.e. n = root epsilon mu, in which the intrinsic electric and magnetic losses and gains are included as the imaginary parts of the complex permittivity and permeability, respectively, as epsilon = epsilon(r) + i(epsilon i) and mu = mu(r) + i mu(i). The electric and magnetic losses are present in all passive materials, which correspond, respectively, to the positive imaginary permittivity and permeability epsilon(i) > 0 and mu(i) > 0. The electric and magnetic gains are present in materials where external pumping sources enable the light to be amplified instead of attenuated, which correspond, respectively, to the negative imaginary permittivity and permeability epsilon(i) < 0 and mu(i) < 0. We have analyzed and determined uniquely the sign of the refractive index, for all possible combinations of the four parameters epsilon(r), mu(r), epsilon(i), and mu(i), in light of the relativistic causality. A causal solution requires that the wave impedance be positive Re {Z} > 0. We illustrate the results for all cases in tables of the sign of refractive index. One of the most important messages from the sign tables is that, apart from the well-known case where simultaneously epsilon < 0 and mu < 0, there are other possibilities for the refractive index to be negative n < 0, for example, for epsilon(r) < 0, mu(r) > 0, epsilon(i) > 0, and mu(i) > 0, the refractive index is negative n < 0 provided mu(i)/epsilon(i) > mu(r)/vertical bar epsilon(r)vertical bar. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Color centers and impurity defects of Ce:YAG crystals grown in reduction atmosphere by temperature gradient techniques have been investigated by means of gamma irradiation and thermal treatments. Four absorption bands associated with color centers or impurity defects at 235, 255, 294 and 370 nm were observed in as-grown crystals. Changes in optical intensity of the 235 and 370 nm bands after gamma irradiation indicate that they are associated with F+-type color center. Charge state change processes of Fe3+ impurity and Ce3+ ions take place in the irradiation process. The variations of Ce3+ ions concentration clearly indicate that Ce4+ ions exist in Ce:YAG crystals and gamma irradiations could increase the concentration of Ce3+ ions. Annealing treatments and the changes in optical density suggest that a heterovalent impurity ion associated with the 294 nm band seems to be present in the crystals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Gamma-ray irradiation induced color centers and charge state recharge of impurity and doped ion in 10 at.% Yb:YAP have been studied. The change in the additional absorption (AA) spectra is mainly related to the charge exchange of the impurity Fe2+, Fe3+ and Yb3+ ions. Two impurity color center bands at 255 and 313 nm were attributed to Fe3+ and Fe2+ ions, respectively. The broad AA band centered at 385 nm may be associated with the cation vacancies and F-type center. The transition Yb3+ -> Yb2+ takes place in the process of gamma-irradiation. Oxygen annealing and gamma-ray irradiation lead to an opposite effect on the absorption properties of the Yb:YAP crystal. In the air annealing process, the transition Fe2+ -> Fe3+ and Yb2+ -> Yb3+ take place and the color centers responsible for the 385 nm band was destroyed. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
YAlO3 (YAP) crystals with different Yb3+ concentration have been grown by Czochralski method and cooperative fluorescence of Yb3+ ions in YAP crystal was studied under 940-nm infrared (IR) LD excitation at room temperature. The Yb concentration dependence of absorption intensity of IR and charge transfer bands exhibit different features. The green emission band in the region of 480-520nm was assigned to the cooperative deexcitation of two Yb3+ ions. The remaining upconverted emission bands containing various sharp peaks associated with impurity ions were observed and discussed. Charge transfer luminescence of heavily doped 20at% Yb:YAP is strongly temperature dependent and no concentration quenching of the charge transfer luminescence was found through the investigation of different Yb levels samples. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Yb (10%):GGG and Yb (30%): GGG crystals have been grown by the Czochralski method. The chemical compositions are: Yb1.07Gd1.74Ga5.19O12 and Yb0.33Gd1.47Ga5.2O12. The absorption and emission spectra of Yb:GGG crystal at room temperature have been measured. The spectroscopic parameters of Yb:GGG and Yb:YAG have been compared. Optical absorption spectra of Yb:GGG show 4f-4f transitions related to Gd3+ ion around 300 nm, and also an onset of charge transfer (CT) transitions from oxygen ligands to Gd3+ or Yb3+ cations below 240nm. The CT absorption of Yb3+ is largely overlapped by that of Gd3+ ions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work, the microstructure, thermal and electric conductivity properties of near-zero thermal expansion ZrW2O8/ZrO2 and Al2O3 added ZrW2O8/ZrO2 composites were studied. Both the two composites exhibit very low thermal conductivity and the thermal conductivity decreases slightly as the temperature increases. The electric conductivity of the two composites increases with the increasing of the measurement temperature. The Al2O3 added ZrW2O8/ZrO2 composite has higher thermal and electric conductivity than ZrW2O8/ZrO2 composite. The most important factor which causes the difference of the thermal and electric conductivity of the composites is the porosity. (C) 2008 The Ceramic Society of Japan. All rights reserved.