622 resultados para Dsc
Resumo:
本文利用DSC、X射线衍射和动态力学分析以及扫描电子显微镜研究了Nd_(60)Al_(10)Fe_(20)Co_(10)大块金属玻璃(BMG)的玻璃转变和晶化过程。结果表明,合金的动态力学分析结果清楚地反映出材料的玻璃转变和晶化过程。由此确定材料的玻璃转变温度为493K,初始晶化温度为590K。X射线衍射和组织分析表明合金的晶化过程为:非晶α→非晶α’+未知亚稳NdFeAl相→非晶α’+初晶δ相→初晶δ相+共晶δ相+Nd_3Co+Nd_3Al。
Resumo:
可控坍塌芯片互连(C4)技术可以实现高速、高密度、小外形的封装,因此日渐得到关注和发展。本文针对发展新一代c4技术所面临的不流动芯下材料的机械性能问题,采用具有不同填充颗粒含量的不流动芯下材料,通过对材料的机械性能的测试和分析以及有限元模拟,初步揭示了不流动芯下材料变形行为的特点,填充颗粒含量对芯下材料机械性能的影响,以及芯下材料机械性能和芯下材料工艺导致的颗粒沉积对封装可靠性的影响。首先在差示扫描量热仪(DSC)、热一力学分析仪(TMA)上对材料的固条件、热膨胀系数、玻璃化转变温度进行了测试,接着又在六轴微型试验机上对材料在不同温度和应变率下的应力一应变行为进行了测试。测试结果表明,所用材料的固化条件和玻璃化转变温度可以满足不流动芯下材料的性能要求,材料的热膨胀系数高于芯下材料理想的热膨胀系数值,材料中填充颗粒含量、温度、应变率等对材料的应力一应变行为有重要的影响。为了解芯下材料中填充颗粒含量对机械性能的影响,对不同颗粒含量材料在各测试温度和应变率下的杨氏模量、屈服强度和流动应力进行了对比和分析。结果表明,在各测试条件下,芯下材料的杨氏模量基本随着颗粒含量的增加而升高;温度较低时,材料的屈服强度随颗粒含量的增加而升高,但是,较高温度时,材料的屈服强度和流动应力随着颗粒含量的增加呈现先升高后降低再升高的变化趋势。为理解芯下材料的屈服强度和流动应力随着颗粒含量非单调变化的行为,采用广义Eshelby等效夹杂法对含颗粒试样在单轴拉伸时试样内的应力分布进行了分析,并用纳米硬度计对材料纳米尺度的性能进行了测量。应力分析的结果表明,不流动芯下材料的SiO2填充颗粒的加入会在基体里引起应力集中,应力集中系数随着颗粒含量的增加先升高后降低,试样内的应力集中有使材料屈服强度降低的趋势。纳米硬度计的测试结果表明,芯~卜材料内形成了性能介于颗粒Z基体之间的界面相,界面相的形成有使芯下材料屈服强度提高的趋势。芯下材料屈服强度随着填充颗粒含量的非单调的变化是应力集中和界面效应藕合作用的结果。温度和应变率是影响芯下材料机械性能的重要因素。为刻画温度和应变率的效应,采用Pe化yna模型描述材料的应力一应变行为。结果表明,Per叮na模型可以拟合材料应变率相关的应力一应变行为,描述不流动芯下材料应力一应变曲线的基本趋势,对材料在测试范围外的行为给出较合理的预测,并且Perzyna模型可以很方便地用于ABAQUS中,这将易于工业应用。最后,采用商用有限元程序AB AQus分析了芯下材料机械性能和芯下材料工艺导致的填充颗粒沉积对C4封装可靠性的影响。结果表明,在芯片/基板的缝隙中填入芯下材料可以显著延长可控坍塌倒装封装焊点的热疲劳寿命,提高封装可靠性,可控坍塌倒装封装焊点的热疲劳寿命随着芯下材料中填充颗粒含量的增加而增长;芯下材料中填充颗粒在C4封装基板侧的沉积将导致封装焊点的热疲劳寿命缩短,而颗粒在芯片侧的沉积则可使焊点的热疲劳寿命稍稍延长。
Resumo:
采用醇热法水解氧氯化锆(ZrOCl2·8H2O)制备ZrO2溶胶,提拉法涂膜。采用粘度、粒度分布、折射率、IR、DSC、AFM等测试手段对溶胶和薄膜性能进行表征。结果表明,ZrO2溶胶颗粒的平均粒径为18.9nm,薄膜经300℃热处理后折射率可高达1.95,膜层表面均匀平整,表面平均粗糙度仅为0.561nm,膜层的激光损伤阈值为14J/cm^2(1064nm,1ns)。
Resumo:
利用磁控溅射法制备了新型AgInSbTe相变薄膜,热处理前后的X射线衍射(XRD)表明了薄膜在热作用下从非晶态转变到晶态.通过非晶态薄膜粉末的示差扫描量热(DSC)实验测定了不同升温速率条件下的结晶峰温度,计算了粉末的摩尔结晶活化能、原子激活能和频率因子,从结晶活化能E可以判断出新型AgInSbTe相变薄膜具有较高的结晶速度,可以用于高速可擦重写相变光盘.
Resumo:
A new composition content quaternary-alloy-based phase change thin film, Sb-rich AgInSbTe, has been prepared by DC-magnetron sputtering on a K9 glass substrate. After the film has been subsequently annealed at 200degreesC for 30 min, it becomes a crystalline thin film. The diffraction peak of antimony (Sb) are observed by shallow (0.5 degree) x-ray diffraction in the quaternary alloy thin film. The analyses of the measurement from differential scanning calorimetry (DSC) show that the crystallization temperature of the phase change thin film is about 190degreesC and increases with the heating rate. By Kissinger plot, the activation energy for crystallization is determined to be 3.05eV. The reflectivity, refractive index and extinction coefficient of the crystalline and amorphous phase change thin films are presented. The optical absorption coefficient of the phase change thin films as a function of photon energy is obtained from the extinction coefficient. The optical band gaps of the amorphous and crystallization phase change thin films are 0.265eV and 1.127eV, respectively.
Resumo:
Thiazolyl heterocyclic azo dye and its metal (Ni2+, Co2+)-azo complexes were synthesized. Their structures were confirmed by elemental analysis, UV-VIS absorption spectra, FT-IR, H-1 NMR and MALDI-MS. The thermal properties of metal complexes were studied by DSC-TGA. The optical constants (complex refractive index N=n + ik) and thickness of the complex thin films on polished single-crystal silicon substrates were investigated on a scanning ellipsometer. Results indicate that thiazolyl metal-azo complexes possess good optical and thermal properties. They would be a promising recording medium candidate for NVD with the Super-resolution near field structure (Super-RENS) technology. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M-2(L)(2) (mu-OCH3)(2) [M = Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, H-1 NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC. Different thermodynamic and kinetic parameters namely activation energy (E
Resumo:
合成了2-(2-氨基-6-乙氧基苯并噻唑基偶氮)-5-(N,N-二乙基氨基)三氟甲基磺酰苯胺偶氮染料(EBTDATFS)及其与乙酸镍、乙酸钴、乙酸铜、乙酸锌等金属盐鏊合的金属鏊合物。通过红外光谱、紫外-可见吸收光谱和MALDI质谱等对染料及其金属鏊合物进行了结构表征;使用旋涂方法在K9玻璃和抛光的单晶硅基片上制备薄膜;研究了镍金属鏊合物的热学性能;使用椭偏仪研究了Ni和Zn鏊合物的光学常数。结果表明:4种金属鏊合物薄膜最大吸收光谱为621-629nm,且长波边吸收峰陡峭;TGA-DSC测试结果表明镍金属鏊
Resumo:
利用直流磁控反应溅射技术制备了氧气和氩气的分压比为5:100的NiOx薄膜。利用X射线衍射仪(XRD)、扫描电镜(SEM)、原子力显微镜(AFM)和光谱仪研究了热处理对薄膜的微观结构和光学性质的影响, 并对沉积态薄膜的粉末进行了热分析。沉积态的NiOx薄膜在262 ℃时开始分解, 导致NiOx薄膜的透过率增加和反射率降低。X射线衍射和示差扫描量热曲线(DSC)分析表明, 在热处理过程中并无物相的变化, 光学性质的变化是由于NiOx薄膜热分解引起薄膜表面形貌发生变化而引起的。通过Kissinger公式计算出
Resumo:
分析了掺Er^3+碲酸盐玻璃的热力学稳定性能,研究了掺Er^3+碲酸盐玻璃的吸收和荧光光谱性质;应用Judd-Ofelt理论计算了碲酸盐玻璃中Er^3+离子的强度参数Ω(Ω2=4.79×10^-20cm^2,Ω4=1.52×10^-20cm^2,Ω6=0.66×10^-20cm^2),计算了离子的自发跃迁几率,荧光分支比;应用McCumber理论计算了Er^3+的受激发射截面(σe=10.40×10^-21cm^2)、Er^3+离子^4I13/2→^4I15/2发射谱的荧光半高宽(FWHM=65.5nm)
Resumo:
Novel GeS2-Ga2S3-AgCl chalcohalide glasses had been prepared by melt-quenching technique, and the glass-forming region was determined by XRD, which indicated that the maximum of dissolvable AgCl was up to 65 mol%. Thermal and optical properties of the glasses were studied by differential scanning calorimetry (DSC) and Visible-IR transmission, which showed that most of GeS2-Ga2S3-AgCl glasses had strong glass-forming ability and broad region of transmission (about 0.45-12.5 mu m). With the addition of AgCl, the glass transition temperature, Tg decreases distinctly, and the short-wavelength cut-off edge (lambda(vis)) of the glasses also shifts to the long wavelength gradually. However, the glass-forming ability of the glass has a complicated evolutional trend depended on the compositional change. In addition, the values of the Vickers microhardness, H (v) , which decrease with the addition of AgCl, are high enough for the practical applications. These excellent properties of GeS2-Ga2S3-AgCl glasses make them potentially applied in the optoelectronic field, such as all-optical switch, etc.
Resumo:
Glass systems of composition xBiCl(3)-(1-x)TeO2 (x=0.2, 0.4, 0.5 and 0.6, respectively) have been investigated by means of DSC, infrared absorption spectroscopy and Raman spectroscopy in order to obtain information about the transformation of structure, thermal and optical properties in the formation of the glass network. The results confirm that the addition of BiCl3 network former increases the glass forming ability and the optical transmission range. And also from Raman results a structural evolution was observed where the number of structural units described as [TeO3] trigonal pyramids, [TeO3+1] polyhedra and ionic behavior bonds (NBO) increases at the expense of the [TeO4] trigonal bipyramids. Bi3+ ions exist in network structure as [BiO6] or [BiCl6] octahedral coordination. As upconversion luminescence glass host, this glassy system is desired for optical properties but the thermal stability will still be improved. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
From Raman and IR spectra, obvious differences of the glass structure were observed in non-Yb3+-doped and Yb3+ -doped fluorophosphate glasses. Results showed that Yb3+ ions can induce, in a better glass, polymerization and network uniformity. Compared with the monophosphate-mastered Yb3+-free glass, Yb3+-doped glass has a pyrophosphate environment. The main building blocks in Yb3+ -doped samples are metaphosphate groups, pyrophosphate groups (P-2(O,F)(7),PO3F), Al[F-6]+Al[O,F](6) and F3Al-O-AlF3 while those of the Yb3+ -free glasses are monophosphate groups P(O,F)(4), little pyrophosphate groups, Al[F-4]+Al[F-6]+Al[O,F](4)+Al[O,F](6) and F3Al-O-AlF3. The DSC analysis also showed a slight increase in crystallization stability. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er3+ doped aluminophosphate glasses with various Na2O/Li2O ratios were prepared at 1250 degrees C using a silica crucible to study mixed alkali effect (MAE). The effect of relative alkali content on glass transition temperature, crystallization temperature and thermal stability were investigated using differential scanning calorimetry (DSC). In addition, apparent activation energies for crystallization, E, were determined employing the Kissinger equation. The effect of Al2O3 content on the magnitude of MAE was also discussed. No mixed-alkali effect is observed on crystallization temperature. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Mg0.4Al2.4O4 single crystals with good optical quality were successfully grown by the Czochralski method. The transmission spectrum indicated that the absorption edge of the crystal was at 220nm, while no apparent absorption peaks were found. The X-ray diffraction and DSC curve analysis showed that Mg0.4Al2.4O4 crystal was stable at room temperature. While after annealing in the air and hydrogen atmosphere at about 1200 degrees C,Mg0.4Al2.4O4 decomposed into Al2O3 and (MgO)(0.4)(Al2O3)(x) (0.4 < x < 1.2). The reaction mainly occurred on the crystal surface, barely inside. (C) 2008 Elsevier B.V. All rights reserved.