52 resultados para Diamines


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Full Paper: Two new 1,1'-binaphthyl-2,2'-diyl-based dianhydrides, i.e., 2,2'-bis(3,4-dicarboxybenzamido)-1,1'-binaphthyl dianhydride (BNDADA) and 2,2'-bis(3,4-dicarboxybenzoyloxy)-1,1'-binaphthyl dianhydride (BNDEDA), were synthesized and polymerized with various aromatic diamines to afford polyimides through the traditional two-step method. The polyimides with inherent viscosities ranging from 0.27 to 0.70 dl . g(-1) showed excellent solubilities in polar solvents such as DMAc, DMSO and NMP etc., except of the poly(ester imide) prepared from BNDEDA and benzidine. Poly(ester imide)s based on BNDEDA can also be readily dissolved in weakly polar solvents such as THF, CH2Cl2 and CHCl3. The glass transition temperatures of these polyimides are in the range of 210-310 degrees C; the 5% weight loss temperatures are in the range of 390-465 degrees C in nitrogen and 384-447 degrees c in air. These polymers from light yellow, tough films that were transparent above 365 nm. The effects of different flexible units attached in the 2- and 2'-positions, i.e., amide, ester and ether, on the properties of the polyimides obtained are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

4-Hydroxyphthalic anhydride, prepared from 4-chlorophthalic anhydride, was reacted with trimellitic anhydride monoacid chloride or arylene diacid chloride to give aromatic ester-containing dianhydrides (EDAs). These dianhydrides were characterized by element analysis, melt point, FTIR and H-1-NMR. A series of aromatic poly (amic ester acid)s was synthesized by polycondensation of these EDAs and various diamines in polar organic solvent. The inherent viscosity of poly (amic ester acid)s ranged from 0.55 to 0.89 dL/g, indicating the intermediate to higher molecular weight. Polyesterimides having glass transition temperatures between 184-219degreesC were produced by thermal imidization of corresponding poly (amic ester acid)s. These polymers were fairly resistant to organic solvent, but some of them were soluble in phenol solvents. Thermogravimetric analyses revealed that these polyesterimides were stable up to 400degreesC, and the 5% weight loss temperatures were recorded in the range of 432-483degreesC in air atmosphers and 451-490degreesC in nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyimides were prepared from diamines: 2,4,6-trimethyl-1,3-phenylenediamine (3MPDA) and 2,3,4,5-tetramethyl-1,4-phenylenediamine (4MPDA). 1,4-Bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3'-4,4'-diphenylsulphone tetracarboxylic dianhydride (SO(2)PDA), 3,3',4,4'-diphenylsulphide tetracarboxylic dianhydride (SPDA), pyromellitic dianhydride (PMDA), and 2,2'-bis(3,4-dicarboxyphenyl)hexa-fluoroisopropane dianhydride (6FDA) were used as dianhydride. The gas permeabilities of H-2, O-2 and N-2 through the polyimides were measured at temperatures from 30 degrees C to 90 degrees C. The results show that as methyl and trifluoromethyl substitution groups densities increase from 7.73 x 10(-3) molcm(-3) to 13.50 x 10(-3)molcm(-3), the peameability of H-2 increases 10-fold at 60% loss of permselectivity of H-2/N-2 however, the permeability of O-2 increases 20-fold at 20% loss of permselectivity of O-2/N-2. For O-2/N-2 separation, PMDA-3MPDA has similar performance to 6FDA-3MPDA and 6FDA-4MPDA; all have higher permeabilities for O-2 than normal polyimides, and the P(O-2)/alpha(O-2/N-2) trade-off relationships lie on the upper bound line for polymers. (C) 1999 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New aromatic diamines [(1) and (2)] containing polycycloalkane structures between two benzene rings were synthesized by HCl-catalyzed condensation reaction of aniline hydrochloride and corresponding polycycloalkanone derivatives. The structures of diamines were identified by H-1-NMR, C-13-NMR, FTIR spectroscopy, and elemental analysis. The polyimides were synthesized from the obtained diamines with various aromatic dianhydrides by one-step polymerization in m-cresol. The inherent viscosities of the resulting polyimides were in the range of 0.34-1.02 dL/g. The polyimides showed good thermal stabilities and solubility. All the polymers were readily soluble in N-methyl-2-pyrrolidone, m-cresol, tetrachloroethane, etc. Some of them were soluble even in chloroform at room temperature. The glass transition temperatures were observed in the range of 323-363 degrees C, and all of the polymers were stable up to 400 degrees C under nitrogen atmosphere. (C) 1999 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel optically active aromatic poly(amide-imide)s (PAIs) containing 1,1'-binaphthyl-2,2'-diyl units in the main chain were prepared by polycondensation reactions of newly synthesized dianhydride, 2,2'-bis(3,4-dicarboxylzenzamido)-1,1'-binaphthyl dianhydride[(S)-BN-DADA and (+/-)-BNDADA], with diamines, The properties of the resulted PAIs were fully characterized by a combination of investigations on inherent viscosity, thermal properties(DSC and TGA), specific rotation, CD and UV-Vis absorbance. These PAIs showed good solubilities, thermal properties and optical stabilities. Interesting UV-Vis absorption behavior of films casted from these PAIs was observed and analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,2,'3,3' -Biphenyltetracarboxylic dianhydride (2,2,'3,3'-BPDA) was prepared by a coupling reaction of dimethyl 3-iodophthalate. The X-ray single-crystal structure determination showed that this dianhydride had a bent and noncopolanar structure, presenting a striking contrast to its isomer, 3,3,'4,4'-BPDA. This dianhydride was reacted with aromatic diamines in a polar aprotic solvent such as N,N-dimethylacetamide (DMAc) to form polyamic acid intermediates, which imidized chemically to polyimides with inherent viscosities of 0.34-0.55 dL/g, depending on the diamine used. The polyimides from 2,2,'3,3'-BPDA exhibited a good solubility and were dissolved in polar aprotic solvents and polychlorocarbons. These polyimides have high glass transition temperatures above 283 degrees C. Thermogravimetric analyses indicated that these polyimides were fairly stable up to 500 degrees C, and the 5% weight loss temperatures were recorded in the range of 534-583 degrees C in nitrogen atmosphere and 537-561 degrees C in air atmosphere. All polyimides were amorphous according to X-ray determination. (C) 1999 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel dianhydride, 3,3'-dioxo-[1,1']-spirodiphthalan-5,5',6,6'-tetracarboxlic dianhydride, was synthesized and used as a monomer to prepare polyimides with several diamines via a conventional two-stage procedure. The intermediate poly(amic-acid)s had inherent viscosities of 0.84-1.71 dL/g and could be thermally converted into lightly yellow, transparent, flexible and tough films. Films cast from chemically imidized polyimides were transparent and colorless. The glass transition temperatures (Tg) were > 400 degrees C, and the 5% weight-loss temperatures were > 420 degrees C in N-2 and in air. The solubilities of these polyimides in various solvents were evaluated. The mechanical properties of some polyimides were also tested. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two closely series of poly(ester imide)s had been synthesized by solution polycondensation of p-phenylenebis(trimellitate) dianhydride with aliphatic diamines. The differential scanning calorimetry (DSC) traces of the most poly(ester imide)s exhibited two endotherms representing the solid state to anisotropic phase transition (T-m1) and the anisotropic to isotropic melt transition (T-m2), respectively. Observation under polarizing microscope and wide-angle X-ray diffraction (WAXD) measurements suggested that the anisotropic phase formed above the melting paints (T-m1) had a smectic character. The thermogravimetric analyses (TGA) revealed that the thermal stabilities of the poly(ester imide)s were up to 350 degrees C. (C) 1999 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel poly(amide imide)s (PAI) containing alkyl-substituted cyclohexylidene moieties were synthesized by conventional polycondensation of trimellitic anhydride chloride with novel aromatic diamines followed by chemical imidization using acetic anhydride and pyridine. The inherent viscosities of the resulting PAIs are relatively high and range from 71 to 112 mt g(-1). The prepared PAIs show excellent thermal stability and good solubility. The glass transition temperatures (T-g) measured by DSC are observed in the range of 312-342 degrees C. Furthermore, all the polymers are readily soluble in less hygroscopic organic solvents like cyclohexanone, gamma-butyrolactone as well as aprotic polar solvents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of new optically active aromatic polyimides containing axially dissymmetric 1,1'-binaphthalene-2,2-diyl units were prepared from optically pure (R)-(+)-or (S)-(-)-2,2'-bis(3,4-dicarboxyphenoxy)-1,1'-binaphthalene dianhydrides and various aromatic diamines via a conventional two-step procedure that included ring-opening polycondensation and chemical cyclodehydration. The optically pure isomer of dianhydride was prepared by a nucleophilic substitution of optically pure (R)-(+)or (S)-(-)1,1'-bi-2-naphthol with 4-nitrophthalonitrile in aprotic polar solvent and subsequent hydrolysis of the resultant tetranitrile derivatives, followed by the dehydration of the corresponding tetracarboxylic acids to obtain the dianhydrides. These polymers were readily soluble in common organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and m-cresol, etc., and have glass transition temperatures of 251-296 degrees C, and 5% weight loss occurs not lower than 480 degrees C. The specific rotations of the optically active polyimides ranged from +196 degrees to +263 degrees, and the optical stability and chiroptical properties of them were also studied. (C) 1997 John Wiley & Sons, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of novel aromatic diamines (1-3) containing kinked cyclohexylidene moieties was synthesized by a reaction of excess aniline and corresponding methyl-substituted cyclohexanone derivatives. The structures of (1-3) were identifield by H-1 NMR, C-13 NMR, and FT-IR. The polymers were synthesized from the obtained diamines and various aromatic dianhydrides by the conventional polycondensation reaction followed by chemical imidization as well as high-temperature one-step polymerization. The inherent viscosities and weight-average molecular weights of the resulting polyimides were in the ranges of 0.55-1.58 dL/g and (7.4-15.2) x 10(4) g/mol, respectively. The prepared polyimides showed excellent thermal stabilities and good solubility. All polymers were readily soluble in common organic solvents such as tetrahydrofuran, chloroform, tetrachloroethane, etc., and the glass transition temperatures were observed at 290-372 degrees C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas permeability coefficients of a series of aromatic polyimides, which were prepared from oxydiphthalic dianhydride (ODPA) with various aromatic diamines, with respect to H-2, CO2, O-2, N-2, and CH4 were measured under 10 atm and in the temperature range from 30 to 150 degrees C. A significant change in gas permeability and permselectivity resulting from systematic variation of the chemical structure of the polyimides was found. Among the polyimides which were prepared from phenylenediamine and its derivatives as well as bridged diamines without side groups on the benzene rings of the diamine residues, the increase of the gas permeability is accompanied by a decrease of the permselectivity. However, both the gas permeability and the permselectivity of the polyimides which were prepared from bridged diamines with methyl or methoxy groups on the benzene rings of the diamine residues simultaneously increase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2,2'-Bis(3,4-dicarboxyphenoxy)-1,1'-binaphthyl dianhydride was used as a new monomer with various aromatic diamines to obtain polyimides by the usual two-step method. The bis(ether anhydride) was prepared by a nucleophilic substitution of I,1'-bi-2-naphthol with N-phenyl-4-chlorophthalimide, N-methyl-4-nitrophthalimide or 4-nitrophthalonitrile in aprotic polar solvent, and subsequent hydrolysis of the resulting bis(ether imide)s or bis(ether dinitrile), and then dehydration of the corresponding tetracarboxylic acid to afford the dianhydride. Most of the obtained polyimides were soluble in chloroform, pyridine, DMF, etc. The polyimide prepared from p-phenylene diamine was partial crystalline, whereas the others showed amorphous patterns in a WAXD study. These polymers have glass transition temperatures between 255-294 degrees C and 5% weight loss temperatures in the range of 502-541 degrees C in nitrogen and 473-537 degrees C in air. (C) 1997 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New alicyclic Polyimides (PIs) were prepared from asymmetric alicyclic dianhydride, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexane-1,2-dicarboxylic anhydride (DOCDA) and the corresponding aromatic diamines such as p-phenylenediamine, m-phenylenediamine and oxydianiline etc. by the polycondensation in N-methyl-2-pyrrolidone (NMP) followed by chemical imidization as well as one step polyimidization in m-cresol in the presence of isoquinoline as a catalyst. The resulting PIs with glass transition temperatures ranging from 220 to 328 degrees C had the inherent viscosities within the range of 0.25 similar to 1.42 dL/g. These polymers were readily soluble in aprotic polar solvents such as NMP, dimethylacetamide (DMAc), dimethylesulfoxide (DMSO), etc. Furthermore, some of the polymers showed good solubility properties to common organic solvents like tetrahydrofurane and chlorform. Also, all of these polyimide films were tough, almost colourless, and transparent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas permeability coefficients of a series of aromatic polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) with various aromatic diamines, to H-2, O-2 and N-2 have been measured under 7 atm and at the temperature range 30-100 degrees C. A significant change in the permeability and permselectivity resulting from the systematic variation in chemical structure of the polyetherimides was found. Among the polyetherimides, that were prepared from phenylenediamine and methyl substituted phenylenediamines, the increase of permeability is accompanied by a decrease of permselectivity. The polyetherimides that were prepared from 3,5-diaminobenzoic esters have lower permselectivity than the others. However, the polyetherimide from 3,5-diaminobenzoic acid possesses much higher permselectivity than the others due to cross-linking. Copyright (C) 1996 Elsevier Science Ltd