85 resultados para DYNAMICAL PARAMETER
Resumo:
This paper has systematically investigated the substrate temperature and thickness dependence of surface morphology and magnetic property of CrAs compound films grown on GaAs by molecular-beam epitaxy. It finds that the substrate temperature affects the surface morphology and magnetic property of CrAs thin film more potently than the thickness.
Resumo:
Cubic boron nitride (c-BN) films were deposited on Si(001) substrates in an ion beam assisted deposition (IBAD) system under various conditions, and the growth parameter spaces and optical properties of c-BN films have been investigated systematically. The results indicate that suitable ion bombardment is necessary for the growth of c-BN films, and a well defined parameter space can be established by using the P/a-parameter. The refractive index of BN films keeps a constant of 1.8 for the c-BN content lower than 50%, while for c-BN films with higher cubic phase the refractive index increases with the c-BN content from 1.8 at chi(c) = 50% to 2.1 at chi(c) = 90%. Furthermore, the relationship between n and rho for BN films can be described by the Anderson-Schreiber equation, and the overlap field parameter gamma is determined to be 2.05.
Resumo:
We present fabrication and experimental measurement of a series of photonic crystal waveguides and coupled structure of PC waveguide and PC micro-cavity. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-holes single-line-defect waveguide. We fabricated these devices on a silicon-on-insulator substrate and characterized them using tunable laser source. We've obtained high-efficiency light propagation and broad flat spectrum response of photonic-crystal waveguides. A sharp attenuation at photonic crystal waveguide mode edge was observed for most structures. The edge of guided band is shifted about 31 nm with the 10 nm increase of lattice constant. Mode resonance was observed in coupled structure. Our experimental results indicate that the optical spectra of photonic crystal are very sensitive to structure parameters.
Resumo:
We report the influence of growth parameters and post-growth annealing on the structural characterizations and magnetic properties of (Ga, Cr)As films. The crystalline quality and magnetic properties are sensitive to the growth conditions. The single-phase (Ga, Cr)As film with the Curie temperature of 10 K is synthesized at growth temperature T-s = 250 degrees C and with nominal Cr content x = 0.016. However, for the films with x > 0.02, the aggregation of Cr atoms is strongly enhanced as both T. and x increase, which not only brings strong compressive strain in the epilayer, but also roughens the surface. The origin of room-temperature ferromagnetism in (Ga, Cr)As films with nanoclusters is also discussed.
Resumo:
A novel and simple method for measuring the chirp parameter, frequency, and intensity modulation indexes of directly modulated lasers is proposed in a small-signal modulation scheme. A graphical approach is presented. An analytical solution to the measurement of low chirp parameters is also given. The measured results agree well with those obtained using the conventional methods.
Resumo:
地址: Chinese Acad Sci, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
Resumo:
An extended technique derived from triple-axis diffraction setup was proposed to measure lattice parameters of cubic GaN(c-GaN) films. The fully relaxed lattice parameters of c-GaN are determined to be 4.5036+0.0004 Angstrom, which is closer to the values of a hypothetical perfect crystal. The speculated zero setting correction (Deltatheta) is very slight and within the range of the accuracy of measurement. Additionally, we applied this method to analyze strain of four different kinds of c-GaN samples. It is found that in-plane strain caused by large lattice mismatch and thermal expansion coefficients mismatch directly influence the epilayer growth at high temperatures, indicating that the relaxation of tensile strain after thermal annealing helps to improve the crystalline quality of c-GaN films and optical properties. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
An accurate and simple technique for measuring the input reflection coefficient and the frequency response of semiconductor laser diode chips is proposed and demonstrated. All the packaging parasitics could be obtained accurately using a calibrated probe, and the impedance of the intrinsic diode chip is deduced from the directly measured reflection coefficient. The directly measured impedance of a laser diode is affected strongly by the short bond wire. In the frequency response (S(2)1) measurements of semiconductor laser diode chips, the test fixture consists of a microwave probe, a submount, and a bond wire. The S-parameters of the probe could be determined using the short-open-match (SOM) method. Both the attenuation and the reflection of the test fixture have a strong influence on the directly measured frequency response, and in our proposed technique, the effect of test fixture is completely removed.
Resumo:
Based on the Buttiker dephasing model, we propose an analytical scattering matrix approach to the long-range electron transfer phenomena. The present efficient scheme smoothly interpolates between the superexchange and the sequential hopping mechanisms. Various properties such as the drastic dephasing-assisted enhancement and turnover behaviors are demonstrated in good agreement with those obtained via the dynamical reduced density-matrix methods. These properties are further elucidated as results of the interplay among the dephasing strength, the tunneling parameter, and the bridge length of the electron transfer system. (C) 2001 American Institute of Physics.
Resumo:
An X-ray diffraction method, estimating the strain relaxation in an ultrathin layer, has been discussed by using kinematic and dynamical X-ray diffraction (XRD) theory. The characteristic parameter Delta Omega, used as the criterion of the strain relaxation in ultrathin layers, is deduced theoretically. It reveals that Delta Omega should be independent of the layer thickness in a coherently strained layer. By this method, we characterized our ultrathin GaNxAs1-x samples with N contents up to 5%. XRD measurements show that our GaNxAs1-x layers are coherently strained on GaAs even for such a large amount of N. Furthermore, a series of GaNxAs1-x samples with same N contents but different layer thicknesses were also characterized. It was found that the critical thickness (L-c) of GaNAs in the GaAs/GaNAs/GaAs structures determined by XRD measurement was 10 times smaller than the theoretical predictions based on the Matthews and Blakeslee model. This result was also confirmed by in situ observation of reflection high-energy electron diffraction (RHEED) and photoluminescence (PL) measurements. RHEED observation showed that the growth mode of GaNAs layer changed from 2D- to 3D-mode as the layer thickness exceeded L-c. PL measurements showed that the optical properties of GaNAs layers deteriorated rapidly as the layer thickness exceeded L-c. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A novel AC driving configuration is proposed for biased semiconductor superlattices, in which the THz driving is provided by an intense bichromatic cw laser in the visible light range. The frequency difference between two components of the laser is resonant with the Bloch oscillation. Thus, multi-photon processes mediated by the conduction (valence) band states lead to dynamical delocalization and localization of the valence (conduction) electrons, and to the formation and collapse of quasi-minibands. Thus, driven Bloch oscillators are predicted to generate persistent THz emission and harmonics of the dipole field, which are tolerant of the exciton and the relaxation effects.