427 resultados para DOT INFRARED PHOTODETECTORS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strongly vertically coupled InAs/GaAs quantum dots (QDs) with modulation doping are investigated, and polarization dependence of two-color absorptions was observed. Analysis of photoluminescence (PL) and absorption spectra shows that s-polarized absorptions at. 10.0 and 13.4 mu m, stem from the first excited state E-1 and the second excited state E-2 in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively, whereas p-polarized absorptions at 10.0 and 8.2 mu m stem from the first excited state E-1 and the ground E-g in the QDs to the bound state E-InGaAs in the InGaAs spacer, respectively. These measurements illustrate that transitions from excited states are more sensitive to normal incidence, which are very important in designing QD infrared detector. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first report of a short wavelength infrared detector based on type II InAs/GaSb superlattices is presented. Very short period superlattices containing InAs (2ML)/GaSb (8ML) superlattices (SLs) were grown by molecular-beam epitaxy on GaSb substrates. The photoluminescence showed a cut-off wavelength at 2.1 mu m at 10 K and 2.6 mu m at 300 K. Room-temperature optical transmittance spectra shows obvious absorption in InAs (2ML)/GaSb (8ML) SL in the range of 450-680 meV, i.e. 1.8-2.7 mu m. The cut-off wavelength moved from 2.3 mu m to 2.6 mu m with temperature rising from 77 K to 300 K in photoresponse spectra. The blackbody response R-v exponentially decreased as a function of 1/T in two temperature sections (130-200 K and 230-300 K). The blackbody detectivity D-bb(center dot) was beyond 1 x 10(8) cmHz(1/2)/W at room temperature. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InAs/GaSb superlattice (SL) short wavelength infrared photoconduction detectors are grown by molecular beam epitaxy on GaAs(001) semi-insulating substrates. An interfacial misfit mode AlSb quantum dot layer and a thick GaSb layer are grown as buffer layers. The detectors containing a 200-period 2ML/8ML InAs/GaSb SL active layer are fabricated with a pixel area of 800 x 800 mu m(2) without using passivation or antireflection coatings. Corresponding to the 50% cutoff wavelengths of 2.05 mu m at 77K and 2.25 mu m at 300 K, the peak detectivities of the detectors are 4 x 10(9) cm.Hz(1/2)/W at 77K and 2 x 10(8) cm.Hz(1/2)/W at 300 K, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InxGa1-xAs/AlyGa1-yAs/AlzGa1-zAs asymmetric step quantum-well middle wavelength (3-5 mum) infrared detectors are fabricated. The components display photovoltaic-type photocurrent response as well as the bias-controlled modulation of the peak wavelength of the main response, which is ascribed to the Stark shifts of the intersubband transitions from the local ground states to the extended first excited states in the quantum wells, at the 3-5.3 mum infrared atmospheric transmission window. The blackbody detectivity (D-bb*) of the detectors reaches to about 1.0x10(10) cm Hz(1/2)/W at 77 K under bias of +/-7 V. By expanding the electron wave function in terms of normalized plane wave basis within the framework of the effective-mass envelope-function theory, the linear Stark effects of the intersubband transitions between the ground and first excited states in the asymmetric step well are calculated. The obtained results agree well with the corresponding experimental measurements. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical properties of InGaAs/GaAs self-organized quantum dots (QDs) structures covered by InxGa1-x As capping layers with different In contents chi ranging from 0. 0 (i.e., GaAs) to 0. 3 were investigated systematically by photoluminescence (PL) measurements. Red-shift of the PL peak energies of the InAs QDs covered by InxGa1-xAs layers with narrower linewidth and less shifts of the PL emissions via variations of the measurement temperatures were observed compared with that covered by GaAs layers. Calculation and structural measurements confirm that the red-shift of the PL peaks are mainly due to strain reduction and suppression of the In/Ga intermixing due to the InxGa1-xAs cover layer, leading to better size uniformity and thus narrowing the PL linewidth of the QDs. 1. 3 mum wavelength emission with very narrow linewidth of only 19. 2 meV at room temperature was successfully obtained from the In0.5Ga0.5As/GaAs QDs covered by the In0.2Ga0.8As layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth interruption was introduced during the growth of GaAs capping layer of self-organized quantum dots. The comparison of two QD lasers with and without growth interruption in their active regions shows that growth interruption leads to lower threshold current, higher characteristic temperature, and weaker temperature dependence of lasing energy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The photoluminescence of self-assembled multilayer In0.55Al0.45As/Al0.5Ga0.5As quantum dot (QD) was measured at various temperatures. Strong photoluminescence of wetting layer (WL) and quantum dots were observed at the same time. Furthermore, direct excitons thermal transfer process between the wetting layer and quantum dots was observed. In the study of temperature dependence of PL intensity it was found that the PL peak of wetting layer contains two quenching processes: at low temperature, excitons are thermally activated from localized states to extended two-dimensional states and then trapped by QDs; at high temperature excitons quench through the X valley of barriers. Using rate equation excitons thermal transfer and quenching processes were analyzed quantitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal-incident infrared absorption in the 8-12-mu m-atmospheric spectral window in the InGaAs/GaAs quantum-dot superlattice is observed. Using cross-sectional transmission electron microscopy, we find that the InGaAs quantum dots are perfectly vertically aligned in the growth direction (100). Under the normal incident radiation, a distinct absorption peaked at 9.9 mu m is observed. This work indicates the potential of this quantum-dot superlattice structure for use as normal-incident infrared imaging focal arrays application without fabricating grating structures. (C) 1998 American Institute of Physics. [S0003-6951(98)01151-6].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the detection wavelength and the electron-hole wave function overlap of InAs/IrxGa1-xSb type II superlattice photodetectors are numerically calculated by using the envelope function and the transfer matrix methods. The band offset is dealt with by employing the model solid theory, which already takes into account the lattice mismatch between InAs and InxGa1-xSb layers. Firstly, the detection wavelength and the wave function overlap are investigated in dependence on the InAs and InxGa1-xSb layer thicknesses, the In mole fraction, and the periodic number. The results indicate that the detection wavelength increases with increasing In mole fraction, InAs and InxGa1-xSb layer thicknesses, respectively. When increasing the periodic number, the detection wavelength first increases distinctly for small periodic numbers then increases very slightly for large period numbers. Secondly, the wave function overlap diminishes with increasing InAs and InxGa1-xSb layer thicknesses, while it enhances with increasing In mole fraction. The dependence of the wave function overlap on the periodic number shows the same trend as that of the detection wavelength on the periodic number. Moreover, for a constant detection wavelength, the wave function overlap becomes greater when the thickness ratio of the InAs over InxGa1-xSb is larger.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrared absorption due to a collective excitation of a two-dimensional electronic gas was observed in GaAs/AlxGa1-xAs multiple-quantum wells when the incident light is polarized parallel to the quantum-well plane. We attribute this phenomenon to a plasma oscillation in the quantum wells. The measured wavelength of the absorption peak due to the plasma oscillation agrees with our theoretical analysis. In addition, in this study the plasma-phonon coupling effect is also fitted to the experimental result. We show that the absorption is not related to the intersubband transitions but to the intrasubband transition, which originates from a plasma oscillation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of novel, colorless, and transparent sot-gel derived hybrid materials Ln-DBM-Si covalently grafted with Ln(DBM-OH)(3)center dot 2H(2)O (where DBM-OH = o-hydroxydibenzoylmethane, Ln = Nd, Er, Yb, and Sin) were prepared through the primary beta-diketone ligand DBM-OH. The structures and optical properties of Ln-DBM-Si were studied in detail. The investigation results revealed that the lanthanide complexes were successfully in situ grafted into the corresponding hybrids Ln-DBM-Si. Upon excitation at the maximum absorption of ligands, the resultant materials displayed excellent near-infrared luminescence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaction of 2,6-pyridinedicarboxylic with CoCl2 . 6H(2)O in aqueous solution give rise to a three-dimensional Complex CO2(2,6-DPC)(2)Co(H2O)(5).2H(2)O (DPC = 2,6-pyridinedicarboxylate) 1. It has been characterized by elemental analyses, infrared spectra (IR) spectrum, thermogravimetric (TG) analysis, EPR spectrum, and single crystal X-ray diffraction. The complex crystallizes in the P2(1)/c space group with a = 8.3906(3) Angstrom, b = 27.4005(8) Angstrom, c = 9.6192(4) A, alpha = 90.00degrees, beta = 98.327(2)degrees, gamma = 90.00degrees, V = 2188.20(14) Angstrom(3), Z = 4. There are two types of cobalt environments: Co(1) is coordinated by four oxygen atoms from four carboxyl groups and two nitrogen 2 atoms which are all from pdc(2). Co(2) is coordinated by six oxygen atoms, five from coordinated water molecules and one from a carboxyl of pdc(2) - of which the other oxygen atom is linked to the Co(1). The extensive intermolecular hydrogen bonds are formed in the crystal by means of the five coordinated water molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new crystal of aluminophosphate, AIPO(4)(.)H(2)O, is synthesized from two-batch aqueous solution under hydrothermal conditions. Three types of the crystal habits, i.e. the tetragonal double pyramid, the tetragonal prism and the plate-type tetragonal prism, are found from batch-A solution. Two types of the crystal habits, i.e. the hexagonal pyramid and the strip-type tetragonal prism, are found from batch-B solution. The change of crystal morphology is originated from the fluctuation of the synthesis conditions, such as the supersaturation, the temperature and the impurity content. It causes change of the step energies, the defect density and the step roughness, and further, change of the growth rates. Since the crystal morphology is sensitive to the mass transport mechanism, the crystal habits could be changed under the microgravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deposition of CdO center dot nH(2)O On CdTe nanoparticles was studied in an aqueous phase. The CdTe nanocrystals (NCs) were prepared in aqueous solution through the reaction between Cd2+ and NaHTe in the presence of thioglycolic acid as a stabilizer. The molar ratio of the Cd2+ to Te2- in the precursory solution played an important role in the photoluminescence of the ultimate CdTe NCs. The strongest photoluminescence was obtained under 4.0 of [Cd2+]/[Te2-] at pH similar to 8.2. With the optimum dosage of Cd(II) hydrous oxide deposited on the CdTe NCs, the photoluminescence was enhanced greatly. The photoluminescence of these nanocomposites was kept constant in the pH range of 8.0-10.0, but dramatically decreased with an obvious blue-shifted peak while the pH was below 8.0. In addition, the photochemical oxidation of CdTe NCs with cadmium hydrous oxide deposition was markedly inhibited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, cooperative self-assembly (CSA) of colloidal spheres with different sizes was studied. It was found that a complicated jamming effect makes it difficult to achieve an optimal self-assembling condition for construction of a well-ordered stacking of colloidal spheres in a relatively short growth time by CSA. Through the use of a characteristic infrared (IR) technique to significantly accelerate local evaporation on the growing interface without changing the bulk growing environment, a concise three-parameter (temperature, pressure, and IR intensity) CSA method to effectively overcome the jamming effect has been developed. Mono- and multiscale inverse opals in a large range of lattice scales can be prepared within a growth time (15-30 min) that is remarkably shorter than the growth times of several hours for previous methods. Scanning electron microscopy images and transmittance spectra demonstrated the superior crystalline and optical qualities of the resulting materials. More importantly, the new method enables optimal conditions for CSA without limitations on sizes and materials of multiple colloids. This strategy not only makes a meaningful advance in the applicability and universality of colloidal crystals and ordered porous materials but also can be an inspiration to the self-assembly systems widely used in many other fields, such as nanotechnology and molecular bioengineering.