164 resultados para Copper Eskimos
Resumo:
A simple one-pot method is developed to prepare size-and shape-controlled copper(I) sulfide (Cu2S) nanocrystals by thermolysis of a mixed solution of copper acetylacetonate, dodecanethiol and oleylamine at a relatively high temperature. The crystal structure, chemical composition and morphology of the as-obtained products are characterized by powder x-ray diffraction (PXRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The morphology and size of the Cu2S nanocrystals can be easily controlled by adjusting the reaction parameters. The Cu2S nanocrystals evolve from spherical to disk-like with increasing reaction temperature. The spherical Cu2S nanocrystals have a high tendency to self-assemble into close-packed superlattice structures. The shape of the Cu2S nanodisks changes from cylinder to hexagonal prism with prolonged reaction time, accompanied by the diameter and thickness increasing. More interestingly, the nanodisks are inclined to self-assemble into face-to-face stacking chains with different lengths and orientations. This one-pot approach may extend to synthesis of other metal sulfide nanocrystals with different shapes and sizes.
Resumo:
High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from -20 to 190 K, and the heat fluxes reach 140 W/cm(2). The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid. Boiling curves of copper foams show three distinct regions. Region I and II are those of natural convection heat transfer, and nucleate boiling heat transfer for all the foam covers. Region III is that of either a resistance to vapor release for the 30 and 60 ppi foam covers, or a capillary-assist liquid flow towards foam cells for the 90 ppi foam covers. The value of ppi has an important effect on the thermal performance. Boiling curves are crossed between the high and low ppi foam covers. Low ppi foams have better thermal performance at low surface superheats, but high ppi foams have better one at moderate or large surface superheats and extend the operation range of surface superheats. The effects of other factors such as pool liquid temperature, foam cover thickness on the thermal performance are also discussed.
Resumo:
This paper presents a novel method for performing polymerase chain reaction (PCR) amplification by using spiral channel fabricated on copper where a transparent polytetrafluoroethylene ( PTFE) capillary tube was embedded. The channel with 25 PCR cycles was gradually developed in a spiral manner from inner to outer. The durations of PCR mixture at the denaturation, annealing and extension zones were gradually lengthened at a given flow rate, which may benefit continuous-flow PCR amplification as the synthesis ability of the Taq polymerase enzyme usually weakens with PCR time. Successful continuous-flow amplification of DNA fragments has been demonstrated. The PCR products of 249, 500 and 982 bp fragments could be obviously observed when the flow rates of PCR mixture were 7.5, 7.5 and 3.0 mm s(-1), respectively, and the required amplification times were about 25, 25, and 62 min, respectively. Besides, the successful segmented-flow PCR of three samples ( 249, 500 and 982 bp) has also been reported, which demonstrates the present continuous-flow PCR microfluidics can be developed for high-throughput genetic analysis.
Resumo:
We report the passivation of two deep copper-related acceptor levels in Cu-diffused p-type GaAs by the group-I element lithium. The deep-level-transient-spectroscopy (DLTS) signals of the well-known Cu-related levels with apparent activation energies 0.15 eV and 0.40 eV disappear in Cu-diffused samples when they are diffused with Li, but can be reactivated by annealing. Photoluminescence measurements show a corresponding disappearance and reappearance of the copper-related luminescence at 1.36 eV. Also we observe with DLT'S an energy level at E(V) + 0.32 eV in the Cu-Li-diff-used samples. The level is neither present in the Cu-diffused samples before Li diffusion nor in Cu-Li-diffused samples after annealing. As the level is not observed in starting materials or solely Li-diffused samples we suggest that it is related to a Cu-Li complex.