75 resultados para Computer Modelling, Interstitial Fluid Flow, Transport Mechanism, Functional Adaptation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

通过使用基于非正交网格有限体积法的FLUTRAPP(fluid flow and transport phenomena pro-gram)程序模拟了工业8 in单晶硅提拉法生长过程.数值模拟结果表明,流场及提拉速率在单晶硅生长过程中具有振荡特性,提拉速率的振荡周期大约为2 min.尖形磁场的引入能够抑制坩埚中熔体流动的振荡,减小提拉速率的振幅,从而有利于提高所生长单晶的质量.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptation is one of the most fundamental issues in the studies of organismal evolution. Pancreatic ribonuclease is a very important digestive enzyme and secreted by the pancreas. Numerous studies have suggested that RNASE1 gene duplication is closely related to the functional adaptation of the digestive system in the intestinal fermentation herbivores. RNASE1 gene thus becomes one of the most important candidate genetic markers to study the molecular mechanism of adaptation of organisms to the feeding habit. Interestingly, RNASE1 gene duplication has also been found in some non-intestinal fermentation mammals, suggesting that RNASE1 gene may have produced novel tissue specificity or functions in these species. In this review, RNASE1 gene and its implications in adaptive evolution, especially in association with the feeding habit of organisms, are summarized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dark current characteristics and temperature dependence for quantum dot infrared photodetectors have been investigated by comparing the dark current activation energies between two samples with identical structure of the dots-in-well in nanoscale but different microscale n-i-n environments. A sequential coupling transport mechanism for the dark current between the nanoscale and the microscale processes is proposed. The dark current is determined by the additive mode of two activation energies: E-a,E-micro from the built-in potential in the microscale and E-a,E-nano related to the thermally assisted tunneling in nanoscale. The activation energies E-a,E-micro and E-a,E-nano decrease exponentially and linearly with increasing applied electric field, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study quantitatively the effects of forced solution on crystal growth, we designed a new set of experimental equipment, in particular, a microchannel mixer was used as crystallization container so that the consumption of protein samples was much reduced and thus an exact syringe pump could be used for precise control of the flow rates. Since the mixer’s section was designed to be rectangular, the solution velocity in its center was steady and constant, and thus repeatable experiments were facilitated. Experimental results showed that the effects of forced solution on protein crystal growth were different under different levels of supersaturation, and new results were obtained for cases of high supersaturation. When the supersaturation is σ = 2.3, with increasing flow rates the growth rates of the lysozyme crystal’s (110) face hardly change when the flow rates are lower than 1300 μm/s, and decrease quickly afterwards. When the flow rate reaches 2000 μm/s, the crystal nearly ceases to grow. When the supersaturation is σ = 2.7, with increasing flow rates the (110) face growth rates increase at the beginning then reach the maximum values at 1700 μm/s – 1900 μm/s and decrease afterwards, approaching zero or so when the flow rate reaches 12000 μm/s. The higher the supersaturation, the larger the flow rate at which the crystal ceases to grow. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the isospin- and momentum-dependent transport model IBUU04, we calculated the reaction of the Sn-132+Sn-124 systems in semi-central collisions at beam energies of 400/A MeV, 600/A MeV and 800/A MeV by adopting two different density dependent symmetry energies. It was found that the proton differential elliptic flow as a function of transverse momentum is quite sensitive to the density dependence of symmetry energy, especially for the considered beam energy range. Therefore the proton differential elliptic flow may be considered as a robust probe for investigating the high density behavior of symmetry energy in intermediate energy heavy ion collisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在越来越受到人们关注的基于物理流体动画领域,目前分别模拟牛顿流体或粘弹性流体的方法很多,但很少有统一模拟两者的方法.文中基于光滑粒子流体动力学方法,通过对传统纳维-斯托克斯方程添加弹性应力项,提出了一种新的统一模拟牛顿流体和粘弹性流体的方法.通过实验说明该方法不仅有效,易于实现,而且具有良好的可控性,仅仅通过调节参数就可以模拟不同粘弹性、不同类型的流体现象.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas hydrate samples were obtained firstly in China by drilling on the northern margin of South China Sea (SCS). To understand the formation mechanism of this unique accumulation system, this paper discusses the factors controlling the formation of the system by accurate geophysical interpretation and geological analysis, based on the high precision 2-D and 3-D multichannel seismic data in the drilling area. There are three key factors controlling the accumulation of the gas hydrate system in fine grain sediment: (1) large volume of fluid bearing methane gas Joins the formation of gas hydrate. Active fluid flow in the northern South China Sea makes both thermal gas and/or biogenic gas migrate into shallow strata and form hydrate in the gas hydrate stability zone (GHSZ). The fluid flow includes mud diapir and gas chimney structure. They are commonly characterized by positive topographic relief, acoustic turbidity and push-down, and low reflection intensity on seismic profiles. The gas chimneys can reach to GHSZ, which favors the development of BSRs. It means that the active fluid flow has a close relationship with the formation and accumulation of gas hydrate. (2) The episodic process of fracture plays an important role in the generation of gas hydrate. It may provide the passage along which thermogenic or biogenic gas migrated into gas hydrate stability zone (GHSZ) upward. And it increases the pore space for the growth of hydrate crystal. (3) Submarine landslide induced the anomalous overpressure activity and development of fracture in the GHSZ. The formation model of high concentration gas hydrate in the drilling sea area was proposed on the basis of above analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To look for gas hydrate, 22 multi-channel and 3 single-channel seismic lines on the East China Sea (ECS) shelf slope and at the bottom of the Okinawa Trough were examined. It was found that there was indeed bottom simulating reflector (BSR) occurrence, but it is very rare. Besides several BSRs, a gas seepage was also found. As shown by the data, both the BSR and gas seepage are all related with local geological structures, such as mud diapir, anticline, and fault-controlled graben-like structure. However, similar structural "anomalies" are quite common in the tectonically very active Okinawa Trough region, but very few of them have developed BSR or gas seepage. The article points out that the main reason is probably the low concentration of organic carbon of the sediment in this area. It was speculated that the rare occurrence of gas hydrates in this region is governed by structure-controlled fluid flow. Numerous faults and fractures form a network of high-permeability channels in the sediment and highly fractured igneous basement to allow fluid circulation and ventilation. Fluid flow in this tectonic environment is driven primarily by thermal buoyancy and takes place on a wide range of spatial scales. The fluid flow may play two roles to facilitate hydrate formation: to help gather enough methane into a small area and to modulate the thermal regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After systemic investigation of the techniques,route lines and mechanisms about the remaining oil,the dynamic migration and congregation behavior of the remaining oil are discussed on base of interaction between flowing and enriching of water and oil.After the micro-scope modeling of the fluid flow in porous media and the changes in petrol-physical properties of the flowing system, the characters of fluid fields and the dynamic distribution of oil are discussed, among which the preference-flowing is focused on. Based on the preference-flowing in porous media, the concept of the preference-flowing channels is developed. According to above, heterogeneous distribution of water and oil in the field and dynamic mechanism of remaining oil are all obvious. media can be divided into three kinds, directional, stochastic, arbitrary porous media. The main research results are as following: 1. Treating the characteristic parameters such as permeability, porosity and wettability as regional parameter, the fluid field with high water-cut has been established by geostatistical method, among which the difference of flowing pores and the changes of its petrol-physical properties during flooding are studied. 2. The flow process of water and oil are recurrent in physical simulation experiments, in which the mechanisms and phenomena are caught and analyzed. Fluid flow mechanics in porous media with preference-flowing channels have been studied. 3. The mutual coupling between water and oil is induced and the mathematical evolution equations including this interaction were built. . 4. Through coupling effect between flowing water and oil, the dynamic migration and congregation behavior of remaining oil depend upon this coupling. 5. Coupling between water and oil act as driving force and trapping force for the remaining oil. The coupling model of thesis has been verified by simplified the numerical model and compared results with Ng35 oil reservoir in Gudao oil field, it has important theoretical and application values for improving precision of remaining oil and production performance prediction, and is a new method for studying the mechanics of remaining oil in channeled porous media has been established. Key words:flow field,high water-cut,coupling,dominant flow in porous media,remaining oil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The East Shandong gold province is located on the southeastern margin of the North China Craton and features uplift in the north and depression in the south. The uplift area is made up of the Archaean Jiaodong Group, the Proterozoic Jingshan Group and Yanshannian granites. Most gold deposits in the uplift area are spatially associated with the Yanshannian granites. Two types of gold mineralization occur in the region: the quartz-vein type hosted in the Linglong granite suite, and the shear zone type hosted by either the Linglong granite or Guojialing granitoid suites. The mineralization ages are 113~126 Ma. The southern part of East Shandong contains the Mesozoic Jiaolai basin, which formed during regional extension. The basin is bounded by the Wulian-Rongcheng fault in the southeast and the Tanlu fault in the west. The Pengjiakuang, Fayunkuang and Dazhuangzi gold deposit occurs on the northeastern margin of the basin. The mineralization ages of these deposits are 110~128 Ma. This paper focuses on a low-angle detachment fault developed between the Proterozoic Jingshan Group metamorphic complex and the northeastern margin of the basin. Our field work shows that the distribution of the Pengjiakuang gold deposit was controlled by the detachment fault. Moreover, the Fayunkuang, Guocheng and Liaoshang gold deposits also occurr in the periphery of the basin, and their features are similar to Pengjiakuang gold deposit. The study of geological geochemistry of the gold deposits has shown: ①three-type gold deposit was situated in the Jiaodong area, including altered rock type (Jiaojia type), quartz vein type (Linglong type) and breccia type (Pengjiakuang type); the ore-forming materials and fluid for Pengjiakuang type gold deposit shows multiple source; ②the ore materials of Jiaojia and Linglong type deposits are mainly from deep source. The author has studied geological-geochemical dynamics of three types deposits in Jiaodong area. The study of tectonic dynamics shows that ore-forming structure differential stress values of Pengjiakuang gold deposit is 100 * 10~6~130 * 10~6 Pa, and that of Jiaojia gold deposit is 100 * 10~5~194 * 10~6 Pa. Dynamics of hydrothermal ore-forming fluid has also been studied in this paper. Author applies Bernoulli equation to dynamic model of hydrothermal fluid motion in brittle fracture and cracks (quartz vein type gold mineralization), and applies Darcy law to dynamic model of hydro thermal fluid motion in porous medium (altered rock type gold mineralization). Author does daring try in order to study quantitativly transport mechanism of hydrothermal ore-forming fluid in this paper. The study of fluid inclusions and crystal dynamics shows that reaction system of hydrothermal ore-forming includes three types, as follows: ore-forming reaction, controlling reaction and buffer controlling reaction. They depend on each other, controlling each other, which form a organic system. Further research shown that formation of ore shoots was controlled by coincidence processes of tectonic dynamic condition and thermodynamic evolution. This paper has summaried reginoal metallogenic laws and seted up metallogenic(dynamics) models for Jiaodong gold ore belt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed the effects of both natural convection and forced flows on solid–liquid interface morphology during upward Bridgman solidification of metallic alloys. Experiments were carried out on Al–3.5wt% Ni alloy, for a cylindrical sample. The influence of natural convection induced by radial thermal gradient on solidified microstructure was first analyzed as a function of the pulling rate. Then, the influence of axial vibration on solidification microstructure was experimentally investigated by varying vibration parameters (frequency and amplitude). Experimental results demonstrated that vibrations could be used to either attenuate fluid flow in the melt and obtain a uniform dendritic pattern or to promote a fragmented dendritic microstructure. However, no marked effect was observed for cellular growth. This pointed out the critical role of the mushy zone in the interaction between fluid flow and solidification microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new crystal of aluminophosphate, AIPO(4)(.)H(2)O, is synthesized from two-batch aqueous solution under hydrothermal conditions. Three types of the crystal habits, i.e. the tetragonal double pyramid, the tetragonal prism and the plate-type tetragonal prism, are found from batch-A solution. Two types of the crystal habits, i.e. the hexagonal pyramid and the strip-type tetragonal prism, are found from batch-B solution. The change of crystal morphology is originated from the fluctuation of the synthesis conditions, such as the supersaturation, the temperature and the impurity content. It causes change of the step energies, the defect density and the step roughness, and further, change of the growth rates. Since the crystal morphology is sensitive to the mass transport mechanism, the crystal habits could be changed under the microgravity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk single crystals of GaN and AlN can be grown from supercritical fluids using the ammonothermal method, which utilizes ammonia as fluid rather than water as in the hydrothermal process. In this process, a mineralizer such as amide, imide or nitride is used to attack a bulk nitride feedstock at temperatures from 200°C to 500°C and pressures from 1 to 4 kbar. Ammonothermal systems have been modeled here using fluid dynamics, thermodynamics and heat transfer models. The nutrient is considered as a porous media bed and the fluid flow is simulated using the Darcy-Brinkman-Forchheimer model. The resulting governing equations are solved using the finite volume method. The effects of particle size on flow pattern and temperature distribution in an autoclave are analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a summary of cellular and dendritic morphologies resulting from the upward directional solidification of Al - Ni alloys in a cylindrical crucible. We analysed the coupling of solid-liquid interface morphology with natural and forced convection. The influence of natural convection was first analyzed as a function of growth parameters (solute concentration, growth rate and thermal gradient). In a second step, the influence of axial vibrations on solidification microstructure was investigated by varying vibration parameters (amplitude and frequency). Experimental results were compared to preliminary numerical simulations and a good agreement is found for natural convection. In this study, the critical role of the mushy zone in the interaction between fluid flow and solidification microstructure is pointed out.