201 resultados para Cation exchanged


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Azadirachtin (Az), as a botanical insecticide, is relatively safe and biodegradable. It affects a wide vaariety of biological processes, including the reduction of feeding, suspension of molting, death of larvae and pupae, and sterility of emerged adults in a dose-dependent manner. However, the mode of action of this toxin remains obscure. By using ion chromatography, we analyzed changes in six inorganic cation (Li+, Na+, NH4+, K+, Mg2+, and Ca2+) distributions of the whole body and hemolymph in Ostrinia furnacalis (G.) after exposure to sublethal doses of Az. The results showed that Az dramatically interfered with Na+, NH4+, K+, Mg2+, and Ca2+ distributions in hemolymph of O. furnacalis (G.) and concentrations of these five cations dramatically increased. However, in the whole body, the levels of K+, Mg2+, and Ca2+ significantly, decreased after exposure to Az, except that Na+ and NH4+ remained constant. Li+ was undetected in both the control and treated groups in the whole body and hemolymph. It is suggested that Az exerts its insecticidal effects on O. furnacalis (G.) by interfering with the inorganic cation distributions related to ion channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Separation of small peptides on ion-exchange capillary electrochromatography (IE-CEC) with strong cation-exchange packing (SCX) as stationary phase was investigated. It was observed that the number of theoretical plates for small peptides varied from 240 000 to 460 000/m, and the relative standard deviation for t(0) and the migration time of peptides were less than 0.57% and 0.27%, respectively for ten consecutive runs. Unusually high column efficiency has been explained by the capillary electrophoretic stacking and chromatofocusing phenomena during the injection and separation of positively charged peptides. The sample buffer concentration had a marked effect on the column efficiency and peak area of the retained peptides. The influences of the buffer concentration and pH value as well as the applied voltage on the separation were investigated. It has been shown that the electrostatic interaction between the positively charged peptides and the SCX stationary phase played a very important role in IE-CEC, which provided the different separation selectivity from those in the capillary electrophoresis and reversed-phase liquid chromatography. A fast separation of ten peptides in less than 3.5 min on IE-CEC by adoption of the highly applied voltage was demonstrated. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A monolithic silica based strong cation-exchange stationary phase was successfully prepared for capillary electrochromatography. The monolithic silica matrix from a sol-gel process was chemically modified by treatment with 3-mercaptopropyltrimethoxysilane followed by a chemical oxidation procedure to produce the desired function. The strong cation-exchange stationary phase was characterized by its substantial and stable electroosmotic flow (EOF), and it was observed that the EOF value of the prepared column remained almost unchanged at different buffer pH values and slowly decreased with increasing phosphate concentration in the mobile phase. The monolithic silica column with strong cation-exchange stationary phase has been successfully employed in the electrochromatographic separation of beta-blockers and alkaloids extracted from traditional Chinese medicines (TCMs). The column efficiencies for the tested beta-blockers varied from 210,000 to 340,000 plates/m. A peak compression effect was observed for atenolol with the mobile phase having a low phosphate concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical fracture mechanics is based on the premise that small scale features could be averaged to give a larger scale property such that the assumption of material homogeneity would hold. Involvement of the material microstructure, however, necessitates different characteristic lengths for describing different geometric features. Macroscopic parameters could not be freely exchanged with those at the microscopic scale level. Such a practice could cause misinterpretation of test data. Ambiguities arising from the lack of a more precise range of limitations for the definitions of physical parameters are discussed in connection with material length scales. Physical events overlooked between the macroscopic and microscopic scale could be the link that is needed to bridge the gap. The classical models for the creation of free surface for a liquid and solid are oversimplified. They consider only the translational motion of individual atoms. Movements of groups or clusters of molecules deserve attention. Multiscale cracking behavior also requires the distinction of material damage involving at least two different scales in a single simulation. In this connection, special attention should be given to the use of asymptotic solution in contrast to the full field solution when applying fracture criteria. The former may leave out detail features that would have otherwise been included by the latter. Illustrations are provided for predicting the crack initiation sites of piezoceramics. No definite conclusions can be drawn from the atomistic simulation models such as those used in molecular dynamics until the non-equilibrium boundary conditions can be better understood. The specification of strain rates and temperatures should be synchronized as the specimen size is reduced to microns. Many of the results obtained at the atomic scale should be first identified with those at the mesoscale before they are assumed to be connected with macroscopic observations. Hopefully, "mesofracture mechanics" could serve as the link to bring macrofracture mechanics closer to microfracture mechanics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The template-directed fabrication of highly-ordered porous film is of significant importance in implementation of the photonic band gap structure. The paper reports a simple and effective method to improve the electrodeposition of metal porous film by utilizing highly-ordered polystyrene spheres (PSs) template. By surface-modification method, the hydrophobic property of the PSs template surfaces was changed into hydrophilic one. It was demonstrated that the surface modi. cation process enhanced the permeability of the electrolyte solution in the nanometer-sized voids of the colloidal template. The homogeneously deposited copper film with the highly-ordered voids in size of less than 500 nm was successfully obtained. In addition, it was found that large defects, such as microcracks in the template, strongly influenced the macroporous films quality. An obvious preferential growth in the cracked area was observed. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaporative convection and instability give rise to both scientific and technological interests. Practically, a number of the industrial applications such as thin-film evaporators, boiling technologies and heat pipes concern with the evaporation process of which through the vapor-liquid interface the heat and mass transfer occur. From a physical viewpoint, one of interesting questions is the mechanisms of convection instability in thin-liquid layers induced by the coupling of evaporation phenomenon and Marangoni effect at the mass exchanged interface. Classical theories, including Rayleigh’s and Pearson’s, have only successfully explained convection in a liquid layer heated from below without evaporation. However these theories are unable to explain the convection in an evaporating thin layer, especially liquid layer is cooled from below. In present paper, a new two-sided model is put forward rather than the one-sided model in previous works. In previous works, the vapor is treated as passive gas and dynamics of vapor has been ignored. In this case, the vapor liquid system can be described by one-sided model. In our two-sided model, the dynamics of vapor should be considered. Linear instability analysis of the Marangoni-Bénard convection in the two-layer system with an evaporation interface is performed. We define a new evaporating Biot number which is different from the Biot number in one-sided model and obtain the curves of critical Marangoni number versus wave number. In our theoretical results, the Biot number and the evaporating velocity play a major role in the stability of the vapor-liquid system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A "swallowtail" cavity for the supersonic combustor was proposed to serve as an efficient flame holder for scramjets by enhancing the mass exchange between the cavity and the main flow. A numerical study on the "swallowtail" cavity was conducted by solving the three-dimensional Reynolds-averaged Navier-Stokes equations implemented with a k-epsilon turbulence model in a multi-block mesh. Turbulence model and numerical algorithms were validated first, and then test cases were calculated to investigate into the mechanism of cavity flows. Numerical results demonstrated that the certain mass in the supersonic main flow was sucked into the cavity and moved spirally toward the combustor walls. After that, the flow went out of the cavity at its lateral end, and finally was efficiently mixed with the main flow. The comparison between the "swallowtail" cavity and the conventional one showed that the mass exchanged between the cavity and the main flow was enhanced by the lateral flow that was induced due to the pressure gradient inside the cavity and was driven by the three-dimensional vortex ring generated from the "swallowtail" cavity structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel technique to fabricate deeply embedded microelectrodes in LiNbO3 using femtosecond pulsed laser ablation and selective electroless plating. The fabrication process mainly consists of four steps, which are (1) micromachining of microgrooves on the surface of LiNbO3 by femtosecond laser ablation; (2) formation of AgNO3 films on substrates; (3) scanning the femtosecond laser beam in the fabricated microgrooves for modi. cation of the inner surfaces; and (4) electroless copper plating. The void-free electroless copper plating is obtained with appropriate cross section of microgrooves and uniform initiation of the autocatalytic deposition on the inner surface of grooves. The dimension and shape of the microelectrodes could be accurately controlled by changing the conditions of femtosecond laser ablation, which in turn can control the distribution of electric field inside LiNbO3 crystal for various applications, opening up a new approach to fabricate three-dimensional integrated electro-optic devices. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用AgNO3和KNO3的混和熔盐作为离子源,系统地研究了K9玻璃离子交换过程中熔盐配比、交换时间和交换温度等工艺参数对波导性能的影响,得到离子交换玻璃波导折射率分布符合高斯函数形式,建立了波导特性与离子交换工艺参数间的联系。测试得到离子交换平板波导的传输损耗为0.45dB/cm,并利用离子交换技术在K9玻璃上制备了一种跑道形谐振腔滤波器,实现了滤波效应。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用AgNO3、KNO3混和熔盐作为离子交换源,在K9玻璃上制备了跑道形谐振腔滤波器。测试得到该滤波器的自由光谱范围为0.178nm,两个输出端口的衬比度分别为1.47dB和6.5dB,分析得到耦合器的分束比和谐振腔的传输损耗分别为κ=0.16和α=8.1dB/cm。利用热光效应在16℃的温度变化范围内,滤波器实现了2π的相位调制,同时分析得到波导材料的热光系数约为1.28×10^-5/℃。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

制备了用于离子交换法制备光波导器件的掺铒碲-钨-钠玻璃基质。应用扎得-奥菲而特(Judd—Ofelt)理论计算了玻璃样品的三个强度参量,由强度参量计算了Er^3+离子的自发跃迁几率、荧光分支比等光谱参量;应用麦克库玻(McCumber)理论,计算了Er^3+离子在1.5μm的受激发射截面,荧光测试发现Er^3+离子的荧光半峰全宽可达65nm。比较了Er^3+离子在不同玻璃基质中的光谱特性。结果表明,Er^3+离子在碲-钨-钠玻璃中具有较高的受激发射截面和较宽的荧光半峰全宽,可以用于宽带光波导器件的制备。