94 resultados para Carbide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

LaC2+, LaC22+, LaC3 and LaC3- clusters have been studied using B3LYP density functional method. Four isomers with C-2v, C-s, C-infinity v and D-infinity h symmetry were presented for LaC2+ and LaC22+. Meanwhile, two spin states, namely, singlet and triplet for LaC2+, doublet and quartet for LaC22+ were considered The results indicated that ring isomers with C-2v and C-s symmetry are the most stable for La-C2(+) at both spin states and for LaC22+ at quartet state. Whereas for LaC22+ at doublet state, linear isomer with C-infinity v symmetry is energetically favored, For LaC3 and LaC3- clusters,, three isomers have been presented for each cluster, that is, two ring isomers with C-2v symmetry ( in one of them, La forms two single bonds with two carbons, and in another, La forms a double bond with carbon), and one linear isomer with C-infinity v symmetry. The results revealed that the ring isomer in which La forms two single bonds with carbons is the lowest in energy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The laser-solidified microstructural and compositional characterization and phase evolution during tempering at 963 K were investigated using an analytical transmission electron microscope with energy dispersive X-ray analysis. The cladded alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1:1:1, was processed with a 3 kW continuous wave CO2 laser. The processing parameters were 16 mm/s beam scanning speed, 3 mm beam diameter. 2 kW laser power, and 0.3 g/s feed rate. The coating was metallurgically bonded to the substrate, with a maximum thickness of 730 mu m, a microhardness of about 860 Hv and a volumetric dilution ratio of about 6%. Microanalyses revealed that the cladded coating possessed the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisted of gamma-austenite and M7C3 carbide. The gamma-austenite was a non-equilibrium phase with extended solid solution of alloying elements and a great deal of defect structures, i.e. a high density of dislocations, twins, and stacking faults existed in gamma phase. During high temperature aging, in situ carbide transformation occurred of M7C3 to M23C6 and M6C. The precipitation of M23C6, MC and M2C carbides from austenite was also observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical behaviors of 2124, Al-5Cu, Al-Li and 6061 alloys reinforced by silicon carbide particulates, together with 15%SiCw/6061 alloy, were studied under the quasi-static and impact loading conditions, using the split Hopkinson tension/compression bars and Instron universal testing machine. The effect of strain rate on the ultra tensile strength (UTS), the hardening modulus and the failure strain was investigated. At the same time, the SEM observations of dynamic fracture surfaces of various MMC materials showed some distinguished microstructures and patterns. Some new characteristics of asymmetry of mechanical behaviors of MMCs under tension and compression loading were also presented and explained in details, and they could be considered as marks to indicate, to some degree, the mechanism of controlling damage and failure of MMCs under impact loading. The development of new constitutive laws about MMCs under impact loading should benefit from these experimental results and theoretical analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium carbide reinforced nickel aluminide matrix in situ composites were produced using a newly patented laser melting furnace. Microstructure of the laser melted TiC/(Ni3Al–NiAl) in situ composites was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results showed that the constituent phases in the laser melted in situ composites are TiC, Ni3Al and NiAl. Volume fraction of TiC and NiAl increase with increasing content of titanium and carbon. The growth morphology of the reinforcing TiC carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium carbide particle (TiCp) reinforced Ni alloy composite coatings were synthesized by laser cladding using a cw 3 kW CO2 laser. Two kinds of coatings were present in terms of TiCp origins, i.e. undissolved and in situ reacted TiCp, respectively. The former came from the TiCp pre-coated on the sample, whereas the latter from in situ reaction between titanium and graphite in the molten pool during laser irradiation. Conventional and high-resolution transmission electron microscope observations showed the epitaxial growth of TiC, the precipitation of CrB, and the chemical reaction between Ti and B elements around phase interfaces of undissolved TiCp. The hardness, H, and elastic modulus, E, were measured by nanoindentation of the matrix near the TiCp interface. For undissolved TiCp, the loading curve revealed pop-in phenomena caused by the plastic deformation of the crack formation or debounding of TiCp from the matrix. As for in situ generated TiCp, no pop-in mark appears. On the other hand, in situ reacted TiCp led to much higher hardness and modulus than that in the case of undissolved TiCp. The coating reinforced by in situ generated TiCp displayed the highest impact wear resistance at both low and high impact conditions, as compared with coatings with undissolved TiCp and without TiCp. The impact wear resistance of the coating reinforced by undissolved TiCp increases at a low impact work but decreases at a high impact work, as compared with the single Ni alloy coating. The degree of wear for the composite coating depends primarily on the debonding removal of TiCp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rapidly solidified microstructural and compositional features, the precipitation and transformation of carbides during tempering, and the impact wear resistance of an iron-based alloy coating prepared by laser cladding are investigated. The clad coating alloy, a powder mixture of Fe, Cr, W, Ni, and C with a weight ratio of 10:5:1.1.1, is processed using a continuous wave CO, laser. Microstructural studies demonstrate that the coating possesses the hypoeutectic microstructure comprising the primary dendritic gamma-austenite and interdendritic eutectic consisting of gamma-austenite and M7C3 carbides. gamma-Austenite is a non-equilibrium phase with an extended solid solution of alloying elements. During high temperature tempering at 963 K for 1 h, the precipitation of M23C6, MC and M2C carbides in austenite and in situ carbide transformation of M7C3 to M23C6 and M7C3 to M6C respectively are observed. In addition, the microstructure of the laser-clad coating reveals an evident secondary hardening and a superior impact wear resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are very strong interests in improving the high-temperature wear resistance of the y-TiAl intermetallic alloy, especially when applied as tribological moving components. In this paper, microstructure, high-temperature dry sliding wear at 600 degrees C and isothermal oxidation at 1000 degrees C on ambient air of laser clad gamma/W2C/TiC composite coatings with different constitution of Ni-Cr-W-C precursor mixed powders on TiAl alloy substrates have been investigated. The results show that microstructure of the laser fabricated composite coatings possess non-equilibrium microstructure consisting of the matrix of nickel-base solid solution gamma-NiCrAl and reinforcements of TiC, W2C and M23C6 carbides. Higher wear resistance than the original TiAl alloy is achieved in the composite coatings under high-temperature wear test conditions. However, the oxidation resistance of the laser clad gamma/W2C/TiC composite coatings is deceased. The corresponding mechanisms resulting in the above behaviors of the laser clad composite coatings are discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact behaviour of a range of glass and ceramic materials has been studied using high-speed photography. A gas gun was used to project hardened spheres at plate specimens in the velocity range 30 to 1000m s-1. The target materials included soda-lime glass, boron carbide and various glass ceramics and aluminas. The performance of a particular ceramic was found to depend on a combination of parameters but of key importance was the relative hardness of the projectile and target materials. The fracture toughness, K(IC), had only a secondary effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large size bulk silicon carbide (SiC) crystals are commonly grown by the physical vapor transport (PVT) method. The PVT growth of SiC crystals involves sublimation and condensation, chemical reactions, stoichiometry, mass transport, induced thermal stress, as well as defect and micropipes generation and propagation. The quality and polytype of as-grown SiC crystals are related to the temperature distribution inside the growth chamber during the growth process, it is critical to predict the temperature distribution from the measured temperatures outside the crucible by pyrometers. A radio-frequency induction-heating furnace was used for the growth of large-size SiC crystals by the PVT method in the present study. Modeling and simulation have been used to develop the SiC growth process and to improve the SiC crystal quality. Parameters such as the temperature measured at the top of crucible, temperature measured at the bottom of the crucible, and inert gas pressure are used to control the SiC growth process. By measuring the temperatures at the top and bottom of the crucible, the temperatures inside the crucible were predicted with the help of modeling tool. SiC crystals of 6H polytype were obtained and characterized by the Raman scattering spectroscopy and SEM, and crystals of few millimeter size grown inside the crucible were found without micropipes. Expansion of the crystals were also performed with the help of modeling and simulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-alumina joints have found various practical applications in electronic devices and high technology industry. However, making of sound metal ceramic brazed couple is still a challenge in terms of its direct application in the industry. In this work we successfully braze copper with Al2O3 ceramic using Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass forming alloy as filler alloy. The shear strength of the joints can reach 140 MPa, and the microstructrural analysis confirms a reliable chemical boning of the interface. The results show that the bulk metallic glass forming alloys with high concentration of active elements are prospective for using as filler alloy in metal-ceramic bonding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

4H-silicon carbide (SiC) metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with Al2O3/SiO2 (A/S) films employed as antireflection/passivation layers have been demonstrated. The devices showed a peak responsivity of 0.12 A/W at 290 nm and maximum external quantum efficiency of 50% at 280 nm under 20 V electrical bias, which were much larger than conventional MSM detectors. The redshift of peak responsivity and response restriction effect were found and analyzed. The A/S/4H-SiC MSM photodetectors were also shown to possess outstanding features including high UV to visible rejection ratio, large photocurrent, etc. These results demonstrate A/S/4H-SiC photodetectors as a promising candidate for OEIC applications. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We measured the wear resistances of alumina, alumina/silicon carbide composite and alumina/mullite composite by abrasive wear. And we studied the influence of fracture mode and worn surface pullout on wear resistance. The results are as follows: the main wear mechanisms of alumina and alumina/silicon carbide were fracture wear and plastic wear respectively, and for alumina/mullite composite, fracture wear and plastic wear mechanisms worked together. The wear resistance of the alumina/silicon carbide composite and the alumina/mullite composite was better by a factor of 1 similar to 3 than that of the monolithic alumina. There were two main reasons for the better wear resistance, i.e., the improved mechanical properties and the more smooth worn surfaces. However, The primary reason was the reduction of area fraction of pullout on the worn surfaces induced by fracture mode transition. (C) 2007 Published by Elsevier B.V.