88 resultados para Cap Canaille
Resumo:
On the basis of the finite element approach, we systematically investigated the strain field distribution of conical-shaped InAs/GaAs self-organized quantum dot using the two-dimensional axis-symmetric model. The normal strain, the hydrostatic strain and the biaxial strain components along the center axis path of the quantum dots are analyzed. The dependence of these strain components on volume, height-over-base ratio and cap layer (covered by cap layer or uncovered quantum dot) is investigated for the quantum grown on the (001) substrate. The dependence of the carriers' confining potentials on the three circumstances discussed above is also calculated in the framework of eight-band k (.) p theory. The numerical results are in good agreement with the experimental data of published literature.
Resumo:
The effects of various InGaAs layers on the structural and optical properties of InAs self-assembled quantum dots (QDs) grown by molecular-beam epitaxy ( MBE) were investigated. The emission wavelength of 1317 nm was obtained by embedding InAs QDs in InGAs/GgAs quantum well. The temperature-dependent and timed-resolved photoluminescence (TDPL and TRPL) were used to study the dynamic characteristics of carriers. InGaAs cap layer may improve the quality of quantum dots for the strain relaxation around QDs, which results in a stronger PL intensity and an increase of PL peak lifetime up to 170 K. We found that InGaAs buffer layer may reduce the PL peak lifetime of InAs QDs, which is due to the buffer layer accelerating the carrier migration. The results also show that InGaAs cap layer can increase the temperature point when, the thermal reemission and nonradiative recombination contribute significantly to the carrier dynamics.
Resumo:
Growth interruption was introduced after the deposition of GaAs cap layer, which is thinner than the mean height of Quantum dots. Uniformity of quantum dots has been enhanced because the full width of half maximum of photoluminescence decrease from 80meV to 27meV in these samples as the interruption time increasing from 0 to 120 second. Meanwhile, we have observed that the peak position of photoluminescence is a function of interruption time. This effect can be used to control the energy level of quantum dots. The phenomena mentioned above can be attributed to the diffusion of In atoms from the top of InAs islands to the top of GaAs cap layer caused by the difference of surface energies between InAs and GaAs.
Resumo:
Effects of rapid thermal annealing and SiO2 encapsulation on GaNAs/GaAs single quantum wells grown by plasma-assisted molecular-beam epitaxy were studied. Photoluminescence measurements on a series of samples with different well widths and N compositions were used to evaluate the effects. The intermixing of GaNAs and GaAs layers was clearly enhanced by the presence of a SiO2-cap layer. However, it was strongly dependent on the N composition. After annealing at 900 degreesC for 30 s, a blueshift up to 62 meV was observed for the SiO2-capped region of the sample with N composition of 1.5%, whereas only a small blueshift of 26 meV was exhibited for the bare region. For the sample with the N composition of 3.1%, nearly identical photoluminescence peak energy shift for both the SiO2-capped region and the bare region was observed. It is suggested that the enhanced intermixing is mainly dominated by SiO2-capped layer induced defects-assisted diffusion for the sample with smaller N composition, while with increasing N composition, the diffusion assisted by interior defects become predominant. (C) 2001 American Institute of Physics.
Resumo:
A self-organized In0.5Ga0.5As/GaAs quantum island structure emitting at 1.35 mum at room temperature has been successfully fabricated by molecular beam epitaxy via cycled (InAs)(1)/GaAs)(1)monolayer deposition method. The photoluminescence measurement shows that a very narrow linewidth of 19.2 meV at 300 K has been reached for the first time, indicating effective suppression of inhomogeneous broadening of optical emission from the In0.5Ga0.5As island structure due to indium segregation reduction by introducing an AlAs layer and the strain reduction by inserting an In0.2Ga0.8As layer overgrown on the top of islands. The mound-like morphology of the islands elongated along the [1 (1) over bar0] azimuth are observed by the atomic force microscopy measurement, which reveals the fact that strain in the islands is partially relaxed along the [1 (1) over bar0] direction. Our results present important information for the fabrication of 1.3 mum wavelength quantum dot devices.
Resumo:
InAs self-assembled quantum dots(QDs) covered by 3-nm-thick InxGa1-xAs(0 less than or equal tox less than or equal to0.3) capping layer have been grown on GaAs(100) substrate. Transmission electron microscopy shows that InGaAs layer reduces the strain in the InAs islands,and atomic force microscopy evidences the deposition of InGaAs on the top of InAs islands when x = 0.3.The significant redshift of the photoluminescence (PL) peak energy and the reduction of PL linewidth of InAs quantum dots covered by InGaAs are observed. In addition,InGaAs overgrowth layer suppresses the temperature sensitivity of PL peak energy. Based on our analysis, the strain-reduction and the size distribution of the InAs QDs are the main cause of the redshift and temperature insensitivity of the PL respectively.
Resumo:
InAs quantum dots (QDs) grown on GaAs surface are investigated. The observed abnormal photoluminescence (PL) properties, including extremely sharp high-energy peaks, almost temperature-independent linewidth, and fast thermal quenching, are discussed in terms of the strong quantum confinement effects due to the absence of a cap layer and the lack of carrier redistribution channel caused by the small number of QDs capable of contributing to PL and the high-density surface defects. (C) 2000 American Institute of Physics. [S0003-6951(00)01244-4].
Resumo:
Self-assembled InAs quantum dots are fabricated on a GaAs substrate by molecular beam epitaxy. The dots are covered by several monolayers of In0.2Ga0.8As before a GaAs cap layer and an in situ postgrowth annealing is performed to tune the emission to higher energy. The temperature dependence of photoluminescence from this structure demonstrates a slower redshift rate of the peak position, a gradual broadening of the linewidth and an abnormal enhancement of integrated intensity as the temperature is increased from 15 to 300 K. These phenomena are closely related to the introduction of an InGaAs layer and to the intermixing of In and Ga atoms during annealing. We propose a model to explain the unusual increase in PL intensity, which fits the experimental data well. (C) 2000 American Institute of Physics. [S0021-8979(00)04618-1].
Resumo:
The strain effect on the band structure of InAs/GaAs quantum dots has been investigated. 1 mu m thick InGaAs cap layer was added onto the InAs quantum dot layer to modify the strain in the quantum dots. The exciton energies of InAs quantum dots before and after the relaxation of the cap layer were determined by photoluminescence. When the epilayer was lifted off from the substrate by etching away the sacrifice layer (AlAs) by HF solution, the energy of exciton in the quantum dots decreases due to band gap narrowing resulted from the strain relaxation. This method can be used to obtain much longer emission wavelength from InAs quantum dots.
Resumo:
The effect of Si overgrowth on the structural and luminescence properties of strained Ge layer grown on Si(1 0 0) is studied. Capping Si leads to the dissolution of Ge island apex and reduced island height. The structural changes in island shape, especially in chemical composition during Si overgrowth have a large effect on the PL properties. The integrated PL intensity of Ge layer increases and there are large blue shifts in peak energies after capping Si. The PL spectra from buried Ge layer are consistent with type-II band alignment in SiGe/Si. We show that the PL properties from buried Ge layer may be tailored by modifying the cap layer growth conditions as well as post-growth annealing. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Growth interruption was introduced after the deposition of GaAs cap layer, which is thinner than the height of quantum dots. Uniformity of quantum dots has been enhanced because the full-width of half-maximum of photoluminescence decrease from 80 to 27 meV in these samples as the interruption time is increased. Meanwhile, we have observed that the peak position of photoluminescence is a function of interruption time, which can be used to modulate energy level of quantum dots. All of the phenomenon mentioned above can be attributed to the diffusion of In atoms from the tops of InAs islands to the top of GaAs cap layer caused by the difference between the surface energies of InAs and GaAs. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the annealing behavior of Photoluminescence (PL) from self-assembled InAs quantum dots (QDs) with different thicknesses GaAs cap layers. The diffusion introduced by annealing treatment results in a blue-shift of the QD PL peak, and a decrease in the integrated intensity. The strain present in QDs enhances the diffusion, and the QDs with the cap layers of different thicknesses will experience a strain of different strength. This can lend to a, better understanding of the larger blue-shift of the PL peak of the deeper buried QDs, and the different variance of the full width at half maximum of the luminescence from QDs with the cap layers of different thicknesses.
Resumo:
An AlGaN/GaN HBT structure was grown by low-pressure metalorganic chemical vapor deposition (MOCVD) on sapphire substrate. From the high-resolution x-ray diffraction and transmission electron microscopy (TEM) measurements, it was indicated that the structure is of good quality and the AlGaN/GaN interfaces are abrupt and smooth. In order to obtain the values of Si doping and electronic concentrations in the AlGaN emitter and GaN emitter cap layers, Secondary Ion Mass Spectroscopy (SIMS) and electrochemical CV measurements were carried out. The results showed that though the flow rate of silane (SiH4) in growing the AlGaN emitter was about a quarter of that in growing GaN emitter cap and subcollector layer, the Si sputtering yield in GaN cap layer was much smaller than that in the AlGaN emitter layer. The electronic concentration in GaN was about half of that in the AlGaN emitter layer. It is proposed that the Si, Al co-doping in growing the AlGaN emitter layer greatly enhances the Si dopant efficiency in the AlGaN alloy. (c) 2006 WILEY-VCH Verlag GmbH & Co KGaA, Weinheim.
Resumo:
无压灌溉土壤湿润体形状为球冠,径向和垂向最大湿润距离相等且与时间存在显著的幂函数关系,随着时间的延长,径向和垂向最大湿润距离趋于一定值。湿润体大小与供水压力之间呈抛物线关系,在零压力附近湿润体体积最大。湿润体半径与累计入渗量呈幂函数关系,拟合方程中的系数和指数为一定值,与入渗时间和供水压力无关,在试验条件下,分别为18.467和0.5037。综合以上结果,提出了预测无压灌溉土壤湿润体特征值的经验解模型。
Resumo:
以黄土丘陵区纸坊沟流域所辖3个自然村农户的调查资料为依据,利用生态足迹理论及模型对该流域生态足迹与生态承载力进行了测算。结果表明,纸坊沟流域退耕还林工程实施前(1999年)生态足迹0.9910 hm2/cap,生态承载力0.8926 hm2/cap,生态赤字0.0984 hm2/cap;退耕还林工程一期结束后(2007年)生态足迹1.0188 hm2/cap,生态承载力1.2703 hm2/cap,生态盈余0.2515 hm2/cap,说明退耕还林工程的实施已见成效;同时退耕还林一期工程实施前后3个自然村生态足迹顺序并未发生变化,这与其区位特征一致。根据该流域及其3个自然村的发展特点,为实现其可持续发展,应发展商品型生态农业,强化产业与资源的耦合。