62 resultados para CHLOROPHYLL-A
Resumo:
Algal bloom phenomenon was defined as "the rapid growth of one or more phytoplankton species which leads to a rapid increase in the biomass of phytoplankton", yet most estimates of temporal coherence are based on yearly or monthly sampling frequencies and little is known of how synchrony varies among phytoplankton or of the causes of temporal coherence during spring algal bloom. In this study, data of chlorophyll a and related environmental parameters were weekly gathered at 15 sampling sites in Xiangxi Bay of Three-Gorges Reservoir (TGR, China) to evaluate patterns of temporal coherence for phytoplankton during spring bloom and test if spatial heterogeneity of nutrient and inorganic suspended particles within a single ecosystem influences synchrony of spring phytoplankton dynamics. There is a clear spatial and temporal variation in chlorophyll a across Xiangxi Bay. The degree of temporal coherence for chlorophyll a between pairs of sites located in Xiangxi Bay ranged from -0.367 to 0.952 with mean and median values of 0.349 and 0.321, respectively. Low levels of temporal coherence were often detected among the three stretches of the bay (Down reach, middle reach and upper reach), while high levels of temporal coherence were often found within the same reach of the bay. The relative difference of DIN between pair sites was the strong predictor of temporal coherence for chlorophyll a in down and middle reach of the bay, while the relative difference in Anorganic Suspended Solids was the important factor regulating temporal coherence in middle and upper reach. Contrary to many studies, these results illustrate that, in a small geographic area (a single reservoir bay of approximately 25 km), spatial heterogeneity influence synchrony of phytoplankton dynamics during spring bloom and local processes may override the effects of regional processes or dispersal.
Resumo:
To determine the environmental factors influencing C, phytoplankton chlorophyll a (Ch1 a), field investigations 4 were conducted in three river-connected lakes (Dongting Lake, Poyang Lake and Shijiu Lake) of the Yangtze floodplain in 2004. Results showed that the average Chi a concentration in these lakes ranged from 2.98 to 3.65 mg m(-3). The major factors influencing Chl a in lentic and lotic regions were total phosphorus (TP) and water velocity (U), respectively. Multiple relationships including total nitrogen (log(10)TN) and water depth (log(10)Z) were established. Further analyses found that the absolute Chi a and slope of log(10)Chl a=f (log(10)TP) in the river-connected lakes were obviously lower than those in the river-isolated lakes. This suggests the river-lake connectivity can significantly modify relationship between TP and chlorophyll a concentration.
Resumo:
A recurrent artificial neural network was used for 0-and 7-days-ahead forecasting of daily spring phytoplankton bloom dynamics in Xiangxi Bay of Three-Gorges Reservoir with meteorological, hydrological, and limnological parameters as input variables. Daily data from the depth of 0.5 m was used to train the model, and data from the depth of 2.0 m was used to validate the calibrated model. The trained model achieved reasonable accuracy in predicting the daily dynamics of chlorophyll a both in 0-and 7-days-ahead forecasting. In 0-day-ahead forecasting, the R-2 values of observed and predicted data were 0.85 for training and 0.89 for validating. In 7-days-ahead forecasting, the R-2 values of training and validating were 0.68 and 0.66, respectively. Sensitivity analysis indicated that most ecological relationships between chlorophyll a and input environmental variables in 0-and 7-days-ahead models were reasonable. In the 0-day model, Secchi depth, water temperature, and dissolved silicate were the most important factors influencing the daily dynamics of chlorophyll a. And in 7-days-ahead predicting model, chlorophyll a was sensitive to most environmental variables except water level, DO, and NH3N.
Resumo:
The relationship between chlorophyll a and fractionation of sediment phosphorus, inorganic phosphate-solubilizing bacteria (IPB), and organic phosphate-mineralizing bacteria (OPB) was evaluated in a large Chinese shallow eutrophic lake (Lake Taihu) and its embayment (Wuli Bay). At the three study sites, the increase of chlorophyll a concentrations in April paralleled those of the iron bound phosphate accounting for major portion of sediment inorganic phosphate, and in June significantly higher OPB and IPB numbers (especially OPB) in sediment were main contributors to the peaks of chlorophyll a concentration. Even though IPB peaked from February to June, it should serve as an unimportant P source due to the irrelevancy with chlorophyll a and soluble reactive phosphorus (SRP). By contrast, at the other site in the embayment, the calcium-bound phosphate was predominant and solid, which was difficult to be released, and neither IPB nor OPB were detectable in the sediment, indicating weak potential for phosphorus release from the sediment, which was reflected in the small seasonal variation in SRP concentration in water column. Hence, the extents to which the three general mechanisms behind phosphate release from sediment (desorption of iron bound phosphate, solubilization by IPB and enzymatic hydrolysis by OPB) operated were different depending on seasons and sites in Lake Taihu, they may jointly drive phosphate release and accelerate the eutrophication processes.
Resumo:
The influence of bicarbonate (HCO3-) on Microcystis aeruginosa FACHB 905 was assessed in this study. Growth curves, chlorophyll a fluorescence and ultrastructure were measured at two HCO3- concentrations, 2.3 mM and 12.4 mM. A treatment of sodium chloride (NaCl) was also conducted alongside to establish the influence level of sodium. It was found that upon treatment with elevated HCO3- concentrations of 2.3 mM and 12.4 mM, cell densities were 13% and 27% (respectively) higher than controls. In photosynthetic performance, elevated HCO3- concentration initially stimulated Fv/Fm at the prophase of culture and then subsequently inhibited it. The inhibition of 2.3mM was higher than that of 12.4mM HCO3-. The maximum relative electron transport rate (ETRmax) exhibited inhibition at elevated HCO3- concentrations. DI0/CS was decreased at 2.3 mM and increased at 12.4mM. In the case of both treatments. ABS/CSI TR0/CS, ET0/CS, RC/CS0 and RC/CSm were decreased by elevated HCO3- concentrations, which indicated damage to photosynthetic apparati and an inactivation of a fraction of reaction centers. This point was also proven by ultrastructural photos. High HCO3--exposed cells lost the characteristic photosynthetic membrane arrangement compared with the control and high salinity treated samples. At the 2.3mM concentration of HCO3-. damage to photosynthetic apparati caused decreased photosynthetic activity. These findings suggested that elevated HCO3- concentration stimulated the growth and photosynthesis of M. aeruginosa FACHB 905 in a short time. Exposure to high HCO3- concentrations for a longer period of time will damage photosynthetic apparatus. In addition, the ultrastructure indicated that elevated HCO3--concentration lead to photosynthetic apparati damage. In our experiment, it was observed that the inhibition effect of 2.3mM HCO3- was higher than that of 12.4mM HCO3-. We hypothesized that M. aeruginosa FACHB 905 induced a protective mechanism under high concentrations of HCO3-.
Resumo:
1. In previous work, phytoplankton regulation in freshwater lakes has been associated with many factors. Among these, the ratio of total nitrogen to total phosphorus (TN : TP) has been widely proposed as an index to identify whether phytoplankton are N- or P-limited. From another point of view, it has been suggested that planktivorous fish can be used to control phytoplankton. 2. Large-scale investigations of phytoplankton biomass [measured as chlorophyll a, (chl-a)] were carried out in 45 mid-lower Yangtze shallow lakes to test hypotheses concerning nutrient limitation (assessed with TN : TP ratios) and phytoplankton control by planktivorous fish. 3. Regression analyses indicated that TP was the primary regulating factor and TN the second regulating factor for both annual and summer phytoplankton chl-a. In separate nutrient-chl-a regression analyses for lakes of different TN : TP ratios, TP was also superior to TN in predicting chl-a at all particular TN : TP ranges and over the entire TN : TP spectrum. Further analyses found that chl-a : TP was not influenced by TN : TP, while chl-a : TN was positively and highly correlated to TP : TN. 4. Based on these results, and others in the literature, we argue that the TN : TP ratio is inappropriate as an index to identify limiting nutrients. It is almost impossible to specify a 'cut-off' TN : TP ratio to identify a limiting nutrient for a multi-species community because optimal N : P ratios vary greatly among phytoplankton species. 5. Lakes with yields of planktivorous fish (silver and bighead carp, the species native to China) > 100 kg ha(-1) had significantly higher chl-a and lower Secchi depth than those with yields < 100 kg ha(-1). TP-chl-a and TP-Secchi depth relationships are not significantly different between lakes with yields > 100 kg ha(-1) or < 100 kg ha(-1). These results indicate that the fish failed to decrease chl-a yield or enhance Z(SD). Therefore, silver carp and bighead carp are not recommended as a biotic agent for phytoplankton control in lake management if the goal is to control the entire phytoplankton and to enhance water quality.
Resumo:
Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse 41 study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under different burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular polysaccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of photosystem II (PS II) after rehydration.
Resumo:
We studied the daily dynamics of nutrients (total phosphorus [TP], total nitrogen [TN], and dissolved silicate [SiO2]) and chlorophyll a (chl a) during a spring bloom in Xiangxi Bay of the Three Gorges Reservoir in year 2005. According to the daily dynamics of chl a, the bloom occurred in two stages (23 February-25 March and 26 March-28 April). The concentration of SiO2 decreased at different layers of the water column with the development of the bloom. However, the decrease of SiO2 in the layers with high concentration of chl a was more dramatic than in the layers with low concentration of chl a. The concentration of TP was lowest value a few days after the peak of chl a during the first bloom period, and the lowest value of TN was found a few days after the peak of chl a during the second bloom period. Correlative analyses indicated that SiO2 and TP were limiting factors in the first bloom period, and SiO2 and TN were limiting factors in the second bloom period.
Resumo:
The attenuation coefficient of photosynthetically available radiation [K-d(PAR)] and three water quality parameters [chlorophyll a (chl a)], chromophoric dissolved organic matter (CDOM) and tripton] were measured at three stations in shallow, subtropical Lake Donghu from April 2003 to March 2004. The multiple regression equation of K-d(PAR) versus chl a, CDOM, and tripton was: K-d(PAR) = 0.44 + 0.019 chl a + 1.88 CDOM + 0.016 tripton, which revealed the relative contributions of the three parameters to K-d(PAR). The effects of water and CDOM on K-d(PAR) were of minor importance (19-26%), while chl a and tripton were the two greatest contributors, accounting collectively for 74-81%.
Resumo:
Horizontal spatial patterns of chlorophyll a in Meiziya Reservoir, Hubei Province, China were analyzed once each month during May, June and July 1997. Two geostatistical techniques, semivariance and fractal analysis, were used to determine variation in chlorophyll a over the whole study area (isotropic) and in different directions (anisotropic). Both techniques provided useful information for detecting and assessing spatial pattern changes of chlorophyll a in freshwater environments. Based on our case study, the distribution of chlorophyll a shifted from aggregated to random distribution in the case of small rainfall event, and then returned to the aggregated distribution after a large rainfall event. On the other hand, the distribution of chlorophyll a became more heterogeneous or random in the direction of water flow (S-N direction) when rainfall events occurred, which was enhanced by rainfall intensity. In contrast, the influence of water flow on the spatial patterns was weak in the E-W direction, and thus the distribution of chlorophyll a remained aggregate with a moderate spatial heterogeneity.
Resumo:
The effects of cadmium (Cd2+) on growth status, chlorophyll (Chl) content, photochemical efficiency, and photosynthetic intensity were studied on Canna indica Linn. Plant specimens that were produced from a constructed wetland and precultivated hydroponically in 20 L of 1/10 Hoagland solution under greenhouse conditions for I week were exposed to cadmium in concentrations of 0, 0.4, 0.8, 1.6 and 3.2 mg L- Cd2+, respectively. The results show that leaves were injured in the Cd2+ solution by the third day of exposure and the injury became more serious with an increase in the applied heavy metal. Under 3.2 mg L-1 Cd2+ treatment, growth retardation, the decrease of chlorophyll content from 0.70 to 0.43 mg g(-1) FW, and a decrease in Chl a/b ratio from 2.0 to 1.2 were observed. Chl a was more sensitive than Chl b to Cd2+ stress. The decrease was the same with photochemical efficiency. Photosynthetic intensity decreased by 13.3% from 1.5X10(4) mumol m(-2)s(-1) CO2 in control to 1.3x10(4) mumol m(2)s(-1) CO2 in the treatment of 3.2 mg L-1. Because Canna species are used in heavy metal phytoremediation, these results show that C. indica can tolerate 0.4 to 0.8 mg L-1 Cd2+. Therefore, it is a potential species for phytoremediation of cadmium with some limitations only at higher concentrations.
Resumo:
Linear DNA, consisting of a drug-resistance marker and long flanking sequences, was synthesized by one-step polymerase chain reaction after a three-piece ligating reaction. Chlorophyll synthesis genes, chlH and chIL in Synechocystis sp. PCC 6803, were replaced by a kanamycin-resistance marker through double recombinations with flanking homology regions. Under LAHG conditions, the chIL but not chlH mutant stopped chlorophyll synthesis, while both synthesized chlorophyll in the light.