101 resultados para CHEMICAL STRUCTURES


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six new nortriterpenoids, schirubridilactones A-F (1-6). as well as 14 known compounds, were isolated from the leaves and stems of Schisandra rubriflora. The Structures of 1-6 were elucidated oil the basis of spectroscopic methods including HSQC, HMBC, H-1-H-1 COSY, and ROESY NMR experiments. The relative stereochemistry of I was confirmed through single-crystal X-ray analysis. In addition, compounds 1-6 showed anti-HIV-1 activity with EC50 values in the range 14.3-80.8 mu g/mL and Selectivity indices in the range 2.2-9.0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A concise quantitative model that incorporates information on both environmental temperature M and molecular structures, for logarithm of octanol-air partition coefficient (K-OA) to base 10 (logK(OA)) of PCDDs, was developed. Partial least squares (PLS) analysis together with 14 quantum chemical descriptors were used to develop the quantitative relationships between structures, environmental temperatures and properties (QRSETP) model. It has been validated that the obtained QRSETP model can be used to predict logK(OA) of other PCDDs. Molecular size, environmental temperature (T), q(+) (the most positive net atomic charge on hydrogen or chlorine atoms in PCDD molecules) and E-LUMO (the energy of the lowest unoccupied molecular orbital) are main factors governing logK(OA) of PCDD/Fs under study. The intermolecular dispersive interactions and thus the size of the molecules play a leading role in governing logK(OA). The more chlorines in PCDD molecules, the greater the logK(OA) values. Increasing E-LUMO values of the molecules leads to decreasing logK(OA) values, implying possible intermolecular interactions between the molecules under study and octanol molecules. Greater q(+) values results in greater intermolecular electrostatic repulsive interactions between PCDD and octanol molecules and smaller logK(OA) values. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the impact of the thickness of GaN buffer layer on the properties of distributed Bragg reflector (DBR) grown by metalorganic chemical vapor deposition (MOCVD). The samples were characterized by using metallographic microscope, transmission electron microscope (TEM), atomic force microscopy (AFM), X-ray diffractometer (XRD) and spectrophotometer. The results show that the thickness of the GaN buffer layer can significantly affect the properties of the DBR structure and there is an optimal thickness of the GaN buffer layer. This work would be helpful for the growth of high quality DBR structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tensile-strained GaAsP/GaInP single quantum well (QW) laser diode (I-D) structures have been grown by low-pressure metal organic chemical vapor deposition (LP-MOCVD) and related photoluminescence (PL) properties have been investigated in detail. The samples have the same well thickness of 16 nm but different P compositions in a GaAsP QW. Two peaks in room temperature (RT) PL spectra are observed for samples with a composition larger than 0.10. Temperature and excitation-power-dependent PL spectra have been measured for a sample with it P composition of 0.15. It is found that the two peaks have a 35 meV energy separation independent of temperature and only the low-energy peak exists below 85 K. Additionally, both peak intensities exhibit a monotonous increase as excitation power increases. Analyses indicate that the two peaks arise from the intrinsic-exciton recombination mechanisms of electron-heavy hole (e-hh) and electron-light hole (e-hh). A theoretical calculation based oil model-solid theory, taking, into account the spin-orbit splitting energy, shows good agreement with our experimental results. The temperature dependence of PL intensity ratio is well explained using the spontaneous emission theory for e-hh and e-hh transitions. front which the ratio can be characterized mainly by the energy separation between the fill and Ill states.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphorous-doped and boron-doped amorphous Si thin films as well as amorphous SiO2/Si/SiO2 sandwiched structures were prepared in a plasma enhanced chemical vapor deposition system. Then, the p-i-n structures containing nano-crystalline Si/SiO2 sandwiched structures as the intrinsic layer were prepared in situ followed by thermal annealing. Electroluminescence spectra were measured at room temperature under forward bias, and it is found that the electroluminescence intensity is strongly influenced by the types of substrate. The turn-on voltages can be reduced to 3 V for samples prepared on heavily doped p-type Si (p(+)-Si) substrates and the corresponding electroluminescence intensity is more than two orders of magnitude stronger than that on lightly doped p-type Si (p-Si) and ITO glass substrates. The improvements of light emission can be ascribed to enhanced hole injection and the consequent recombination of electron-hole pairs in the luminescent nanocrystalline Si/SiO2 system. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the electronic structures and magnetic properties of the anatase TiO2 doped with 3d transition metals (V, Cr, Mn, Fe, Co, Ni), using first-principles total energy calculations based on density functional theory (DFT). Using a molecular-orbital bonding model, the electronic structures of the doped anatase TiO2 are well understood. A band coupling model based on d-d level repulsions between the dopant ions is proposed to understand the chemical trend of the magnetic ordering. Ferromagnetism is found to be stabilized in the V-, Cr-, and Co-doped samples if there are no other carrier native defects or dopants. The ferromagnetism in the Cr- and Co-doped samples may be weakened by the donor defects. In the Mn-, and Fe-doped samples, the ferromagnetism can be enhanced by the acceptor and donor defects, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGaN photovoltaic structures with p-n junctions have been fabricated by metal organic chemical vapour deposition. Using double-crystal X-ray diffraction measurements, it was found that the room temperature band gaps of p-InGaN and n-InGaN films were 2.7 and 2.8 eV, respectively. Values of 3.4 x 10(-2) mA cm(-2) short-circuit current, 0.43 V open-circuit voltage and 0.57 fill factor have been achieved under ultraviolet illumination (360 nm), which were related to p-n junction connected back-to-back with a Schottky barrier and many defects of the p-InGaN film. 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis and characterization of Zn-doped InN nanorods by metal-organic chemical vapor deposition. Electron microscopy images show that the InN nanorods are single-crystalline structures and vertically well-aligned. Energy-dispersive X-ray spectroscopy analyses suggest that Zn ions are distributed nonhomogenously in InN nanorods. Simulations based on diffusion model show that the doping concentration along the radial direction of InN nanorod is bowl-like from the exterior to the interior, the doping concentration decreases, and Such dopant distribution result in a bimodal EDXS spectrum of Zn across the nanorod. The study of the mechanism of doping effect is useful for the design of InN-based nanometer devices. Also, high-quality Zn-doped InN nanorods will be very attractive as building blocks for nano-optoelectronic devices.'

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using first-principles molecular dynamics simulations, the displacement threshold energy and defect configurations are determined in SiC nanotubes. The simulation results reveal that a rich variety of defect structures (vacancies, Stone-Wales defects and antisite defects) are formed with threshold energies from 11 to 64 eV. The threshold energy shows an anisotropic behavior and exhibits a dramatic decrease with decreasing tube diameter. The electronic structure can be altered by the defects formed by irradiation, which suggests that the electron irradiation may be a way to use defect engineering to tailor electronic properties of SiC nanotubes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the aim of investigating the possible integration of optoelectronic devices, epitaxial GaN layers have been grown on Si(Ill) semiconductor-on-insulator (SOI) and on Si/CoSi2/Si(111) using metalorganic chemical vapor deposition. The samples are found to possess a highly oriented wurtzite structure, a uniform thickness, and abrupt interfaces. The epitaxial orientation is determined as GaN(0001)//Si(111), GaN[1120]//Si[110], and GaN[1010]//Si[112], and the GaN layer is tensilely strained in the direction parallel to the interface. According to Rutherford backscattering/channeling spectrometry and (0002) rocking curves, the crystalline quality of GaN on Si(111) SOI is better than that of GaN on silicide. Room-temperature photoluminescence of GaN/SOI reveals a strong near-band-edge emission at 368 nm (3.37 eV) with a full width at half-maximum of 59 meV. (c) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO vertical well-aligned nanorods were grown on A1N/sapphire by using metal-organic chemical vapor deposition. We first observed the ZnO net-like structures under the nanorods. The different strain was determined in these two layers by using double crystal X-ray diffraction, Raman spectra, which revealed that the nanorods were relaxed and the net-like structures were strained. The optical properties of two layers were measured by using the cathodoluminescence and photo luminescence and the shift of UV peaks was observed. Moreover, the growth mechanism of the ZnO nanorods and the net-like structures is discussed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm(2)/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5 mu m x 5 mu m are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 Omega/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/mm and a maximum drain current density of 800 mA/mm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AlGaN/GaN npn heterojunction bipolar transistor structures were grown by low-pressure MOCVD. Secondary ion mass spectroscopy (SIMS) measurements were carried out to study the Mg memory effect and redistribution in the emitter-base junction. The results indicated that there is a Mg-rich film formed in the ongrowing layer after the Cp2Mg source is switched off. The Mg-rich film can be confined in the base section by switching off the Cp2Mg source for appropriate time before the end of base growth. Low temperature growth of the undoped GaN spacer suppresses the Mg redistribution from Mg rich film. The delay rate of the Mg profile in sample C with spacer growing in low temperature is about 56 nm/decade, which becomes sharper than 80 nm/decade of the samples A and B without low temperature spacer. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc oxide flower-like bunches were directly synthesized on indium-doped tin oxide (ITO) glass substrates through a simple chemical bath deposition process. By adjusting precursor concentration, other morphologies ( spindles and rods) were also obtained. All of them are hexagonal and single crystalline in nature and grow along the [ 0001] crystallographic direction. The possible growth mechanisms for these nano- and microcrystals were proposed. It was revealed that both the inherent highly anisotropic structure of ZnO and the precursor concentration play crucial roles in determining final morphologies of the products. In addition, vibrational properties of ZnO crystals with different morphologies were investigated by Raman spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al0.38Ga0.62N/AIN/GaN HEMT structures have been grown by metal-organic chemical vapor deposition (MOCVD) on 2-inch sapphire substrates. Samples with AIN growth time of 0s (without AIN interlayer), 12, 15, 18 and 24s are characterized and compared. The electrical properties of two-dimensional electron gas (2DEG) are improved by introducing AIN interlayers. The AIN growth time in the range of 12-18s, corresponding to the AIN thickness of 1-1.5 nm, is appropriate for the design of Al0.38Ga0.62N/AIN/GaN HEMT structures. The lowest sheet resistance of 277 Omega sq(-1) and highest room temperature 2DEG mobility of 1460 cm(2)V(-1) s(-1) are obtained on structure with AIN growth time of 12s. The structure with AIN growth time of 15s exhibits the highest 2DEG concentration of 1.59 x 10(13) cm(-2) and the smallest RMS surface roughness of 0.2 nm. (c) 2006 Elsevier B.V. All rights reserved.