90 resultados para BRIGHTNESS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

By incorporating a new building block, 7,7,15,15-tetraoctyldinaphtho-s-indacene (NSI), into the backbone of poly(9,9-dioctylfluorene) (PFO), a novel series of blue light-emitting copolymers (PFO-NSI) have been developed. The insertion of the NSI unit into the PFO backbone leads to the increase of local effective conjugation length, to form low-energy fluorene-NSI-fluorene (FNF) segments that serve as exciton trapping sites, to which the energy transfers from the high-energy PFO segments. This causes these copolymers to show red-shifted emissions compared with PFO, with a high efficiency and good color stability and purity. The best device performance with a luminance efficiency of 3.43 cd . A(-1), a maximum brightness of 6 539 cd . m(-2) and CIE coordinates of (0.152, 0.164) was achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline LaOCl:Tb3+/Sm3+ phosphors were synthesized by a Pechini-type sol-gel process. Under UV and electron-beam excitation, LaOCl:Tb3+/Sm3+ show the characteristic emission of Tb3+ (D-5(3,4) -> F-7(6), ... (2)) and Sm3+ ((4)G(5/2) -> H-6(5/2),(7/2),(9/2)), respectively. In particular, the cathodoluminescence (CL) color of LaOCl:Tb3+ can be tuned from blue to green by changing Tb3+-doped concentration, and their CL intensities (brightness) are higher than those of commercial products Y2SiO5:Ce3+ and ZnO:Zn, respectively. White CL can be realized by codoping with Tb3+ and Sm3+ in a single-phase LaOCl host. The obtained white light is very close to the standard white light. These phosphors are promising for application in field-emission displays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report a facile route which is based Oil tuning doping concentration of Mn2+ ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn2+ dopant (orange-yellow) are sensitive to the Mn2+ doping concentration, due to the energy transfer from ZnS host to Mn2+ dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn2+-doped ZnS nanocrystals. Furthermore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A highly efficient and colour-stable three-wavelength white organic light-emitting diode with the structure of indium tin oxide (ITO)/MoO3/N,N'-diphenyl-N,N'-bis (1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,4'-N,N'-dicarbazole-biphenyl (CBP): bis(2,4-diphenylquinolyl-N,C-2') iridium( acetylacetonate) (PPQ)(2)Ir(acac)/NPB/p-bis(p-N,N-diphenyl-aminostyryl)benzene (DSA-Ph):2-methyl-9,10-di(2-naphthyl) anthracene (MADN)/tris (8-hydroxyquinoline) aluminum (AlQ): 10-(2-Benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/AlQ/LiF/Al is fabricated and characterized. A current efficiency of 12.3 cdA(-1) at an illumination-relevant brightness of 1000 cd m(-2) is obtained, which rolls off slightly to 10.3 cdA(-1) at a rather high brightness of 10 000 cd m(-2). We attribute this great reduction in the efficiency roll-off to the wise management of singlet and triplet excitons between emissive layers as well as the superior charge injection and diffusion balance in the device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Simple single-dopant white organic light-emitting devices (WOLEDs) with optimized efficiency/color quality/brightness trade-offs are developed; the white light produced shows the best color quality ever exhibited by WOLEDs at very high brightness, and is even able to duplicate the natural sunlight source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four diboron-contained ladder-type pi-conjugated compounds 1-4 were designed and synthesized. Their thermal, photophysical, electrochemical properties, as well as density functional theory calculations, were fully investigated. The single crystals of compounds 1 and 3 were grown, and their crystal structures were determined by X-ray diffraction analysis. Both compounds have a ladder-type g-conjugated framework. Compounds I and 2 possess high thermal stabilities, moderate solid-state fluorescence quantum yields, as well as stable redox properties, indicating that they are possible candidates for emitters and charge-transporting materials in electroluminescent (EL) devices. The double-layer device with the configuration of [ITO/NPB (40 nm)/1 or 2 (70 nm)/LiF (0.5 nm)/Al (200 nm)] exhibited good EL performance with the maximum brightness exceeding 8000 cd/m(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocyrstalline LaAlO3:Sm3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), photoluminescence, and cathodoluminescence (CL) spectra were utilized to characterize the synthesized phosphors. XRD results reveal that the sample begins to crystallize at 600 degrees C, and pure LaAlO3 phase can be obtained at 700 degrees C. FE-SEM images indicate that the Sm3+-doped LaAlO3 phosphors are composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of UV light (245 nm) and low-voltage electron beams (1-3 kV), the Sm3+-doped LaAlO3 phosphors show the characteristic emissions of the Sm3+ ((4)G(5/2)-H-6(5/2), H-6(7/2), H-6(9/2) transitions) with a yellow color. The CL intensity (brightness) of the Sm3+-doped LaAlO3 phosphor is higher than that of the commercial product [Zn(Cd)S:Ag+] (yellow) to some extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New carbazole-based copolymers, which contain various concentrations of 9-alkyl-3, 6-carbazole fragments in the main chain connected via alkylene spacers, have been synthesized by Ni(0)-catalyzed Yamamoto-type aryl-aryl coupling reactions. Full characterization of the copolymer structure by NMR spectroscopy and elemental analysis is presented. These compounds represent amorphous materials of high thermal stability with glass transition temperatures of 151-162 degrees C and thermal decomposition starting at temperatures > 390 degrees C. UV-Vis absorption and photoluminescence emission of the copolymers confirmed that the effectively conjugated segment in the 3,6-linked carbazole-type copolymers is limited to dyads (dimeric units). However, copolymers with varying concentrations of the oligocarbazole chromophores demonstrate different charge injection and transport properties in multilayer light-emitting diodes with the copolymers as the hole transport and Alq(3) as the electroluminescent/electron transport layer. The device based on a copolymer composed of oligocarbazole blocks with an average length of around four carbazoles exhibited the best overall performance with a turn-on voltage of 3.5 V, a maximal photometric efficiency of 4.1 cd center dot A(-1) and maximum brightness of about 4 200 cd center dot m(-2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of monodisperse oligo(9,9-di-n-octylfluorene-2,7-vinylene)s (OFVs) with fluorene units up to 11 has been synthesized following a divergent approach. Chain length was found to affect not only photophysical properties but also thermal properties. Absorption and photoluminescence spectra are red-shifted with increasing chain length. The effective conjugated length has been extrapolated to be as long as 19 fluorene vinylene units, indicative of a well-conjugated system. With the number of fluorene units > 5, the oligomers exhibit nematic mesomorphism. Glass transition temperature (T-g) and clearing point temperature (T-c) increase with increasing molecular length and with those of OFV11 up to 71 and 230 degrees C, respectively. The oligomers can form uniform films by solution casting for fabrication of light-emitting diodes. With a device structure of ITO/ PEDOT:PSS/OFV11/Ca/Al, a current efficiency of 0.8 cd.A(-1) at a brightness of 1300 cd.m(-2) along with a maximum brightness of 2690 cd.m(-2) have been realized. This performance is notably superior to that of the corresponding polymer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new dysprosium complex Dy(PM)(3)(TP)(2) [where PM = 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone and TP = triphenyl phosphine oxide] was synthesized, and its single-crystal structure was also studied. Its photophysical properties were studied by absorption spectra, emission spectra, fluorescence quantum efficiency, and decay time of the f-f transition of the Dy3+ ion. In addition, the antenna effect was introduced to discuss the energy transfer mechanism between the ligand and the central Dy3+ ion. Finally, a series of devices with various structures was fabricated to investigate the electroluminescence (EL) performances of Dy(PM)(3)(TP)(2). The best device with the structure ITO/CuPc 15 nm/Dy complex 70 nm/BCP 20 nm/AlQ 30 nm/LiF 1 nm/Al 100 nm exhibits a maximum brightness of 524 cd/m(2), a current efficiency of 0.73 cd/A, and a power efficiency of 0.16 lm/W, which means that a great improvement in the performances of the device was obtained as compared to the results reported in published literature. Being identical to the PL spectrum, the EL spectrum of the complex also shows characteristic emissions of the Dy3+ ion, which consist of a yellow band at 572 nm and a blue emission band at 480 nm corresponding to the F-4(9/2)-H-6(13/2) and F-4(9/2)-H-6(15/2) transition of the Dy3+ ion, respectively. Consequently, an appropriate tuning of the blue/yellow intensity ratio can be presumed to accomplish a white luminescent emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several organic electroluminescent devices with different device structures were fabricated based on an organosamarium complex Sm(HFNH)(3)phen[HFNH=4, 4, 5, 5, 6, 6, 6-heptafluoro-l-(2-naphthvl)hexane-1, 3-dione; phen=1, 10-phenanthroline] as emitter. Their electroluminescent properties were investigated in detail. Although the devices with the optimal structure ITO/TPD (50nm)/ Sm(HFNH)(3)phen (xwt%):CBP (50nm)/BCP (20nm)/AIQ (30nm)/LiF (1 nm),/Al (200nm) show high brightness (more than 400cd/m(2)) and high current efficiency (about 1 cd/A), there are emissions from CBP, BCP and even from AIQ existing in the electroluminescence (EL) spectra besides emission from Sm(HFNH)(3)Phen. The reason to this was discussed. The device with the structure ITO/TPD (50 nm)/ Sm(HFNH)(3)phen (50 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm) exhibits the maximum brightness of 118 cd/m(2) and current efficiency of 0.029 cd/A, and shows emissions from AIQ and Sm(HFNH)(3)phen at high voltages. However, with the BCP hole-block layer added, the device [ITO/TPD (50 nm)/Sm(HFNH)(3)phen (50 nm)/BCP (20 nm)/AIQ (30 nm)/LiF (1 nm)/Al (200 nm)] exhibits pure Sm3+ emission in 2 the EL spectra even at high voltages, with the maximum current efficiency of 0.29cd/A and brightness of 82cd/m(2)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The near infrared long lasting phosphorescence of Yb3+ is observed in Yb3+ and Mn2+ codoped zinc borosilicate glasses. Compared with the glasses solely activated by Mn2+, when the Yb3+ ion is codoped, the red long lasting phosphorescence of the samples is largely improved in both brightness and persistent time but the photostimulated long lasting phosphorescence is greatly depressed. It is considered that the appearance of the phosphorescence of Yb3+ is due to the alteration of the energy transfer channel; additionally, Yb3+ also changes the trap depth of the glasses with the shallower trap predominating therefrom the red long lasting phosphorescence is improved and the photostimulated long lasting phosphorescence is degraded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate extremely stable and highly efficient organic light-emitting diodes (OLEDs) based on molybdenum oxide (MoO3) as a buffer layer on indium tin oxide (ITO). The significant features of MoO3 as a buffer layer are that the OLEDs show low operational voltage, high electroluminescence (EL) efficiency and good stability in a wide range of MoO3 thickness. A green OLED with structure of ITO/MoO3/N,N-'-di(naphthalene-1-yl)-N,N-'-diphenyl-benzidene (NPB)/NPB: tris(8-hydroxyquinoline) aluminum (Alq(3)):10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-(1)-benzopyropyrano(6,7-8-i,j)quinolizin-11-one (C545T)/Alq(3)/LiF/Al shows a long lifetime of over 50 000 h at 100 cd/m(2) initial luminance, and the power efficiency reaches 15 lm/W. The turn-on voltage is 2.4 V, and the operational voltage at 1000 cd/m(2) luminance is only 6.9 V. The significant enhancement of the EL performance is attributed to the improvement of hole injection and interface stability at anode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improved efficiency of organic light-emitting diodes (OLEDs) based on europium complexes have been realized by using a fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl))-4H-pyran (DCJTB) doping. The luminous efficiency of the devices with a fluorescent dye in the emissive layer was found to improve two times of that in devices without fluorescent dye. The devices showed pure red light, which is the characteristic emission of trivalent europium ion with a full-width at half-maximum of 3 nm. The maximum brightness and luminous efficiency reached 1200 cd/m(2) at 23 V and 7.3 cd/A (2.0 Im/w), respectively, at a current density of 0.35 mA/cm(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure red organic light-emitting diodes based on a dinuclear europium complex with a structure of (TTA)(3)Eu(PYO)(2)Eu(TTA)3 (TTA = thenoyltrifluoroacetonate, PYO = pyridine N-oxide) were presented. The devices showed pure red emission at a peak wavelength of 612 nm with a full width at half maximum of 3 nm, which is a characteristic emission from Eu3+ ion based on D-5(0) -> F-7(2) transition. The maximum brightness and electroluminescent (EL) efficiency reached 340 cd/m(2) at a driving voltage of 19 V and 2.4 cd/A (0.78 lm/W) at a current density of 0.14 mA/cm(2), respectively.