59 resultados para Artificial organs
Resumo:
Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79, 1.45, 1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.
Resumo:
The ground state of a double quantum-dot structure is studied by a simplified Anderson-type model. Numerical calculations reveal that the ground-state level of this artificial molecule increases with the increasing single particle level of the dot, and also increases with the decreasing transfer integrals. We show the staircase feature of the electron occupation and the properties of the ground-state eigenvector by varying the;single particle level of the dot.
Resumo:
Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level power management policies. We proposed two PM policies-Back propagation Power Management (BPPM) and Radial Basis Function Power Management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79 . 1.45 . 1.18-competitive separately for traditional timeout PM . adaptive predictive PM and stochastic PM.
Resumo:
The present study reports a subretinal implant device which can imitate the function of photoreceptor cells. Photodiode (PD) arrays on the chip translate the incident light into current according to the intensity of light. With an electrode at the end of every photodiode, the PDs transfer the current to the remnant healthy visual cells such as bipolar cells and horizontal cells and then activate these cells. Biocompatible character of the materials and artificial photoreceptor itself were tested and the photoelectric characteristics of the chips in simulative condition were described and discussed.
Resumo:
Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.
Resumo:
Two kinds of quantum computation systems using artificial molecules: quantum computer and quantum analog computer are described. The artificial molecule consists of two or three coupled quantum dots stacked along z direction and one single electron, In quantum computer, one-qubit and two-qubit gates are constructed by one molecule and two molecules, respectively. The coupling between two qubits in a quantum gate can be controlled by thin film electrodes. We also constructed a quantum analog computer by designing a three-dot molecule network and mapping a graph 3-colorability problem onto the network. The ground-state configuration of the single electrons in the network corresponds to one of the problem solutions, We numerically study the operations of the two kinds of the quantum computers and demonstrate that they quantum gates can perform the quantum computation and solve complex problems.
Resumo:
Resumo:
通过秋水仙素诱导获得同源四倍体水稻10个株系,包括6个恢复系、3个保持系和1个不育系,这些株系具有加倍的染色体组。田间观察表明10个株系具有特殊的农艺性状:茎杆变粗壮、植株颜色加深、叶片变厚、叶宽适度增加、分蘖数减少、有效分蘖的比率下降等。根尖有丝分裂鉴定表明,同源四倍体水稻10个株系具有正常的有丝分裂,观察细胞的染色体数目皆为2n=48。花粉母细胞减数分裂鉴定表明10个株系具有比较理想的减数分裂行为,后期I染色体滞后、末期I微核生成和末期II异常小孢子比率较低,能较好的完成减数分裂过程,其中后期I染色体滞后比率约为10%-20%,末期I微核生成比率约为1%-6%,末期II异常小孢子比率约为1%-8%。这提示,染色体联合和分离不规则导致三价体、单价体 和落后染色体等产生,并进一步导致在后期和末期不均横分离产生异常小孢子,这可能是同源四倍体株系结实率不高的原因之一。 同源四倍体水稻正常胚囊为蓼型,变异胚囊具有多种类型,其比率显著高于二倍体对照,变化范围为39.62%-69.85%。按变异胚囊的结构特点和形成方式,分为四种类型:退化型,结构变异型,无融合生殖型和反足细胞增殖型。退化型胚囊的平均比率为29.17%,包括小胚囊(15.04%)和完全退化胚囊(14.13%),前者仍有较小胚囊腔而后者胚囊腔缺失。结构变异胚囊包括结构缺失、结构重复和位置异常,反映了蓼型胚囊八核七细胞结构的变异,其在各株系的平均比率为18.96%。无融合生殖胚囊发生比率极低,平均比率为1.77%,类型包括反足胚和卵细胞胚。反足细胞增殖胚囊是反足细胞团频繁增殖形成,伴随上述三种变异发生使异常胚囊的多样性进一步增加,其在各株系的平均比率为10.62%。相关分析表明,同源四倍体水稻结实可能主要来自三部分:正常胚囊、正常型小胚囊和反足细胞增殖型胚囊。这三种胚囊具有相对完整的蓼型结构,可能具有较好的育性,其对结实率的贡献程度估计值分别为72.44%、15.12%、12.44%。此外,完全退化型胚囊和位置异常型胚囊对结实率分别表现出显著(-0.66)和极显著(-0.92)的负相关,这表明二者可能是结实性的抑制因素。 Ten autotetraploid strains, which include six restoring lines, three maintaining lines and a sterile line, are derived from artificial induction by colchicine treatments. Variations of agronomical traits are observed which include large organs, sturdy plants, long panicle length and deep leaf color and so on. It has been confirmed that autotetraploid strains exhibit normal chromosome behaviors in mitosis and the chromosome numbers are all 48. Moreover, abnormal chromosome behaviors are investigated in meiosis including univalent, trivalent, quatrivalent, chromosome lagging and microkernel and so on. It evaluates that the percentage of chromosome lagging in anaphase I is about 10%-20%, the percentage of microkernel in telophase I is about 1%-6% and the percentage of abnormal microspore in telophase II is about 1%-8%. In all, abnormal behaviors of chromosomes could induce univalent, trivalent and et al. and subsequently induce infertile microspore. That may be one of the causes of low seed sets in autotetraploid strains. Embryo sacs of autotetraploid strains are formed according to the Polygonum type. However, these strains exhibit variations of abnormal embryo sacs at high frequencies (39.62% - 69.85%). The variations are frequently involved in the spikelets of the main panicles and the first tillers, leading to obvious decreases of the percentages of normal embryo sacs among the strains. Four types of abnormal embryo sacs are classified basing on their different structures and origins: degenerated embryo sac (DES), structure variation (SV), apomixis (Apo) and antipodal cell proliferation (ACP). Embryo sacs of DES (29.17%) exhibit small embryo sacs (15.04%) or no embryo sac (14.13%), the former showing embryo sacs with decreased size and the latter showing no sac. Embryo sacs of AS (18.96%) include three subtypes: structure deletion, structure duplication and location variation, which suggests abnormalities of the eight nuclei, seven celled pattern of the Polygonum type. Embryo sacs of Apo (only 1.77%) include two origins of apomictic embryos: antipodal embryo and egg embryo. Embryo sacs of ACP are observed frequently (10.62%) in autotetraploid strains which subsequently increase the variations of abnormal embryo sacs. It evaluates by the Pearson’s correlation analysis that seed set is probably contributed by three origins of embryo sacs: normal embryo sacs, small embryo sacs (normal pattern) and embryo sacs of ACP. These three origins exhibit comparatively good structure of the Polygonum type and could account for seed set at a percentage of 72.44%, 15.12%, 12.44%, respectively. Moreover, the subtype of no embryo sac (NES) negatively related to seed set at the P>0.01 level (-0.92) and the subtype of location variation (LV) negatively related to seed set at the P>0.05 level (-0.66). Which suggest the two subtypes may have strong stress on seed set.
Resumo:
A slab optical waveguide (SOWG) has been used for study of adsorption of both methylene blue (MB) and new methylene blue (NMB) in liquid-solid interface. Adsorption characteristics of MB and NMB on both bare SOWG and silanized SOWG by octadecyltrichlorosilane (ODS) were compared. The simultaneous determinations of both MB and NMB were explored by flow injection SOWG spectrophotometric analysis and artificial neural networks (ANNs) for the first time. Concentrations of MB and NMB were estimated simultaneously with the ANNs. Results obtained with SOWG were compared with those got by conventional UV-visible spectrophotometry. (C) 2003 Elsevier Science B.V All rights reserved.
Resumo:
Nucleosides in human urine and serum have frequently been studied as a possible biomedical marker for cancer, acquired immune deficiency syndrome (AIDS) and the whole-body turnover of RNAs. Fifteen normal and modified nucleosides were determined in 69 urine and 42 serum samples using high-performance liquid chromatography (HPLC). Artificial neural networks have been used as a powerful pattern recognition tool to distinguish cancer patients from healthy persons. The recognition rate for the training set reached 100%. In the validating set, 95.8 and 92.9% of people were correctly classified into cancer patients and healthy persons when urine and serum were used as the sample for measuring the nucleosides. The results show that the artificial neural network technique is better than principal component analysis for the classification of healthy persons and cancer patients based on nucleoside data. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An artificial oxygen carrier is constructed by conjugating hemoglobin molecules to biodegradable micelles. Firstly a series of triblock copolymers (PEG-PMPC-PLA) in which the middle block contains pendant propargyl groups were synthesized and characterized. After the amphiphilic copolymer was self-assembled into core-shell micelles in aqueous solution, azidized hemoglobin molecules protected by carbon monoxide (CO) were conjugated to the micelles via click reaction between the propargyl and azido groups. The conjugation causes an increase of the micelle's mean diameter. Maximum conjugation ratio is 250 wt% in the hemoglobin-conjugated micelles (HCMs). Oxygen-binding ability of the HCMs was demonstrated by converting the CO-binding state of the HCMs into O-2-binding state.