37 resultados para Art 181 Código de Comercio


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterning sapphire substrate can relax the stress in the nitride epilayer, reduce the threading dislocation density, and significantly improve device performance. In this article, a wet-etching method for sapphire substrate is developed. The effect of substrate surface topographies on the quality of the GaN epilayers and corresponding device performance are investigated. The GaN epilayers grown on the wet-patterned sapphire substrates by MOCVD are characterized by means of scanning electrical microscopy (SEM), atomic force microscopy (AFM), high-resolution x-ray diffraction (HRXRD), and photoluminescence (PL) techniques. In comparison with the planar sapphire substrate, about a 22% increase in device performance with light output power of 13.31 mW@20mA is measured for the InGaN/GaN blue LEDs grown on the wet-patterned sapphire substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of plasma induced damage in different conditions of ICP and PECVD processes on LEDs were presented. For ICP mesa etch, in an effort to confirm the effects of dry etch damage on the optical properties of p-type GaN, a photoluminescence (PL) measurement was investigated with different rf chuck power. It was founded the PL intensity of the peak decreased with increasing DC bias and the intensity of sample etched at a higher DC bias of -400V is less by two orders of magnitude than that of the as-grown sample. Meanwhile, In the IN curve for the etched samples with different DC biases, the reverse leakage current of higher DC bias sample was obviously degraded than the lower one. In addition, plasma induced damage was also inevitable during the deposition of etch masks and surface passivation films by PECVD. The PL intensity of samples deposited with different powers sharply decreased when the power was excessive. The PL spectra of samples deposited under the fixed condition with the different processing time were measured, indicating the intensity of sample deposited with a lower power did not obviously vary after a long time deposition. A two-layer film was made in order to improve the compactness of sparse dielectric film deposited with a lower power.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparing with the conventional CCFL (Cold Cathode Fluorescent Lamp) backlight, three-basic-color LEDs backlight has some advantages such as good color reproduction, long life and lead free etc. Theoretically, the color gamut is determined by x, y coordinates of the three basic colors in CIE chromaticity diagram, and the x, y coordinates of each basic color can derived from the relative spectrum distribution (RSD) of the LED. In this paper, the red, green and blue LEDs' RSD models are established to calculate and analyze the color gamut of a backlight. By simulating those models, the relationships that the color gamut of a LED backlight varies with each color are analyzed, and the optimum combination of three colors is obtained within the given wavelengths ranges. Moreover, the combinations of three colors for the gamut of 115% NTSC and 110% NTSC are plotted in pictures, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under high concentration the temperature of photovoltaic solar cells is very high. It is well known that the efficiency and performance of photovoltaic solar cells decrease with the increase of temperature. So cooling is indispensable for a concentrator photovoltaic solar cell at high concentration. Usually passive cooling is widely considered in a concentrator system. However, the thermal conduction principle of concentrator solar cells under passive cooling is seldom reported. In this paper, GaInP/GaAs/Ge triple junction solar cells were fabricated using metal organic chemical vapor deposition technique. The thermal conductivity performance of monolithic concentrator GaInP/GaAs/Ge cascade solar cells under 400X concentration with a heat sink were studied by testing the surface and backside temperatures of solar cells. The tested result shows that temperature difference between both sides of the solar cells is about 1K. A theoretical model of the thermal conductivity and thermal resistance of the GaInP/GaAs/Ge triple junction solar cells was built, and the calculation temperature difference between both sides of the solar cells is about 0.724K which is consistent with the result of practical test. Combining the theoretical model and the practical testing with the upper surface temperature of tested 310K, the temperature distribution of the solar cells was researched.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaSb based cells as receivers in thermophotovoltaic system have attracted great interest and been extensively studied in the recent 15 years. Although nowadays the manufacturing technologies have made a great progress, there are still some details need to make a further study. In this paper, undoped and doped GaSb layers were grown on n-GaSb (100) substrates from both Ga-rich and Sb-rich solutions using liquid phase epitaxy (LPE) technique. The nominal segregation coefficients k of intentional doped Zn were 1.4 and 8.8 determined from the two kinds of GaSb epitaxial layers. Additionally, compared with growing from Ga-rich solutions, the growing processes from Sb-rich solutions were much easier to control and the surface morphologies of epitaxial layers were smoother. Further-more, in order to broaden the absorbing edge, Ga1-xInxAsySb1-y quaternary alloys were grown on both GaSb and InAs substrates from In-rich solutions, under different temperature respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pt/AlGaN/AlN/GaN Schottky diodes have been fabricated and characterized for H-2 sensing. Platinum (Pt) with a thickness of 20nm was evaporated on the sample to form the Schottky contact. The ohmic contact, formed by evaporated Ti/Al/Ni/Au metals, was subsequently annealed by a rapid thermal treatment at 860 degrees C for 30 s in N-2 ambience. Both the forward and reverse current of the device increased greatly when exposed to H-2 gas. The sensor's responses under different hydrogen concentrations from 500ppm to 10% H-2 in N-2 at 300K were investigated. A shift of 0.45V at 297K is obtained at a fixed forward current for switching from N-2 to 10% H-2 in N-2. Time response of the sensor at a fixed bias of 0.5 V was also measured. The turn-on response of the device was rapid, while the recovery of the sensor at N-2 atmosphere was rather slow. But it recovered quickly when the device was exposed to the air. The decrease in the barrier height of the diode was calculated to be about 160meV upon introduction of 10% H-2 into the ambient. The sensitivity of the sensor is also calculated. Some thermodynamics analyses have been done according to the Langmuir isotherm equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the ground target detection, classification and sensor fusion problems in distributed fiber seismic sensor network. Compared with conventional piezoelectric seismic sensor used in UGS, fiber optic sensor has advantages of high sensitivity and resistance to electromagnetic disturbance. We have developed a fiber seismic sensor network for target detection and classification. However, ground target recognition based on seismic sensor is a very challenging problem because of the non-stationary characteristic of seismic signal and complicated real life application environment. To solve these difficulties, we study robust feature extraction and classification algorithms adapted to fiber sensor network. An united multi-feature (UMF) method is used. An adaptive threshold detection algorithm is proposed to minimize the false alarm rate. Three kinds of targets comprise personnel, wheeled vehicle and tracked vehicle are concerned in the system. The classification simulation result shows that the SVM classifier outperforms the GMM and BPNN. The sensor fusion method based on D-S evidence theory is discussed to fully utilize information of fiber sensor array and improve overall performance of the system. A field experiment is organized to test the performance of fiber sensor network and gather real signal of targets for classification testing.