135 resultados para Aluminum.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report near infrared broadband emission of bismuth-doped barium-aluminum-borate glasses. The broadband emission covers 1.3 mum window in optical telecommunication systems. And it possesses wide full width at half maximum (FWHM) of similar to 200nm and long lifetime as long as 350 mus. The luminescent properties are quite sensitive to glass compositions and excitation wavelengths. Based on energy matching conditions, we suggest that the infrared emission may be ascribed to P-3(1) --> P-3(0) transition of Bi+. The broad infrared emission characteristics of this material indicate that it might be a promising candidate for broadband optical fiber amplifiers and tunable lasers. (C) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The broadband luminescence covering 1.2-1.6 mu m was observed from bismuth and aluminum co-doped germanium oxide glasses pumped by 808 nm laser at room temperature. The spectroscopic properties of GeO2:Bi,Al glasses strongly depend on the glass compositions and the pumping sources. To a certain extent, the Al3+ ions play as dispersing reagent for the infrared-emission centers in the GeO2:Bi,Al glasses. The broad infrared luminescence with a full width at half maximum larger than 200 nm and a lifetime longer than 200 mu s possesses these glasses with the potential applications in broadly tunable laser sources and ultra-broadband fiber amplifiers in optical communication field. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

YAlO3 (YAP) crystals with different Yb3+ concentration have been grown by Czochralski method and cooperative fluorescence of Yb3+ ions in YAP crystal was studied under 940-nm infrared (IR) LD excitation at room temperature. The Yb concentration dependence of absorption intensity of IR and charge transfer bands exhibit different features. The green emission band in the region of 480-520nm was assigned to the cooperative deexcitation of two Yb3+ ions. The remaining upconverted emission bands containing various sharp peaks associated with impurity ions were observed and discussed. Charge transfer luminescence of heavily doped 20at% Yb:YAP is strongly temperature dependent and no concentration quenching of the charge transfer luminescence was found through the investigation of different Yb levels samples. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlON with a composition of Al23O27N5 was prepared by hot pressing at temperatures lower than 1900°C. The microstructures and final properties, including both mechanical properties and optical properties, of the sintered specimens were studied. The results showed that sintering temperature had a great influence on the densification of specimens and could lead to very different properties, especially the optical transmittance and the maximum infrared transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface dipole and its role in the effective work function (EWF) modulation by Al incorporation are investigated. Our study shows that the interface dipole located at the high-k/SiO2 interface causes an electrostatic potential difference across the metal/high-k interface, which significantly shifts the band alignment between the metal and high-k, consequently modulating the EWF. The electrochemical potential equalization and electrostatic potential methods are used to evaluate the interface dipole and its contribution. The calculated EWF modulation agrees with experimental data and can provide insight to the control of EWF in future pMOS technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Al-, Ga-, and In-doped Bi4Ti3O12 thin films were prepared on fused quartz substrates by chemical solution deposition. Their microstructures and optical properties were investigated by x-ray diffraction and UV-visible-NIR spectrophotometer, respectively. The optical band-gap energies, Urbach energies, and linear refractive indices of all the films are derived from the transmittance spectrum. Following the single oscillator model, the dispersion parameters such as the average oscillator energy (E-0) and dispersion energy (E-d) are achieved. The energy band gap and refractive indices are found to decrease with introducing the dopants of Al, Ga, and In, which is useful for the band-gap engineering and optical waveguide devices. The refractive index dispersion parameter (E-0/S-0) increases and the chemical bonding quantity (beta) decreases in all the films compared with those of bulk. It is supposed to be caused by the nanosize grains in films. (c) 2009 American Institute of Physics. [DOI 10.1063/1.3138813]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al-2(SO4)(3)]=0.0837 mol.L-1, [NaHCO3]=0.214 mol.L-1, 15 degreesC. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well. Excellent quality of Al2O3 films in this work is supported by electron dispersion spectroscopy, Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we developed a new kind of substrate, the silver-coated anodic aluminum oxide (AAO), to investigate the characters of surface-enhanced resonant Raman scattering (SERRS) of the dilute single-walled carbon nanotubes. Homogeneous Ag-coated AAO substrate was obtained by decomposing the AgNO3 on the surface of AAO. single-walled carbon nanotubes (SWNTs) were directly grown onto this substrate through floating catalyst chemical vapor deposition method (CVD). SERRS of SWNTs was carried out using several different wavelength lasers. The bands coming from metallic SWNTs were significantly enhanced. The two SERRS mechanisms, the "electromagnetic" and "chemical" mechanism, were mainly responsible for the experiment results. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an aluminum oxynitride (AlON) film which was successfully made using the reactiver r.f. sputtering method in an N2-O2 mixture. The fabrication process, atomic components, breakdown field and refractive index of the AlON film are shown in detail. The AlON film is a new polyfilm combining the good properties of Al2O3 and AlN, and it is very interesting with regard to optoelectronic devices and integrated optic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and alpha-Si layers were deposited by magnetron sputtering respectively and annealed at 480A degrees C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between gamma-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of gamma-Al2O3, which was formed at the early stage of annealing.