276 resultados para 185-1149C
Resumo:
项目针对热带亚热带森林生态系统服务功能及所属区域社会发展的需求,结合全球变化(CO2浓度上升导致的全球变暖、氮沉降、降水格局演变)所面临的关键科学问题,系统开展森林生态系统碳、氮、水等过程演变规律的研究。经过十多年的努力,取得如下创新性理论:⑴成熟森林土壤可持续积累有机碳。发现亚热带成熟森林表土层(0-20cm)有机碳以0.61t/hm2•a的速度增加,为确认成熟森林作为新的碳汇奠定基础。⑵成熟森林趋于氮饱和。发现热带亚热带成熟森林生态系统趋于氮饱和,氮沉降增加将导致系统养分平衡的破坏。⑶退化生态系统恢复限制因子理论。水热季节分配不均限制了退化生态系统的恢复。⑷森林生态系统恢复/演替过程中其结构与功能、地上和地下不同步理论。创新方法:计算土壤C贮量长期变化的新方法;建立森林地下NPP关联估算模型;基于C/N确定森林土壤硝化与反硝化作用速率;推出降水动能及其受林冠分配调控的理论计算方法;提出任意时空尺度的生态系统水热状况量度指标及计算公式。发表Science等SCI论文52篇,核心期刊论文185篇,专著3部,被SCI论文引用312篇次,核心期刊引用2277篇次,核心内容之一被评为“2006年度中国基础研究十大新闻”。该成果催生生态系统非平衡理论框架的建立,引起国际同行的极大关注并获得高度评价,达到了世界领先水平。
Resumo:
本文采用物种生物学的方法分析了绵枣[Scilla sinensis (Lour.) Merr.]多倍体复合体细胞地理、形态、生态适应和发育节律的变异。此外,还对AA细胞型居群进行了等位酶分析和杂交实验。结果如下: 1. 细胞学检查秀自中国境内45个居群,检出AA、AB、BB、AAA、BBB和AABB 6个细胞型。多数居群由1种细胞型组成。AA几乎占据着该复合体在中国的整个分布区。BB仅局限于华中和华东地区。AABB分布于华中和华东地区的北侧、东北地区的东南部及台湾岛。45个居的细胞型组成以细胞地理分布图表示。总结前人与我们的工作,该复合体中已发现12个整倍体细胞型(AA、AB、BB、AAA、ABB、BBB、AAAA、AABB、ABBB、BBBB、AABBB和AAABBB)和各种基于多倍体的非整倍体。其基本细胞型为AA、BB和AABB。AA分布于除日本和大陆上BB分布区中心外该复合体的整个分布区。BB分布中国华东和华中地区、朝鲜的济州岛和日本。AABB分布日本、朝鲜和中国东北地区的东南部及华中、华东地区的东侧。另外,BB居群染色体数量最多,AABB次之,而AA最低。 2. 野外调查和栽培实验表明AA细胞型在中国东部和西部地区间存在形态和生态分化,东部居群形态变异较小,其共同特征是纺锤形鳞茎,红褐色;根茎短柱状;叶多灰绿色,蜡质明显,斜升;花葶较强壮而直立;花紫红色;子房每室1胚珠。西部为AA细胞型的现代变异中心,居群间形态变异大,区别于东部居群的特点是鳞茎纺锤形或近球形,根茎短柱状或盘状,叶鲜绿色,蜡质不明显,平卧地面;花葶1-4枝,直立,多花葶时斜升;花白色或淡红色,子房每室胚珠1 ~ 2枚。AA和BB细胞型是向着适于不同地理区的环境发展,因而具有不同的形态和生物学特性的两个类型。BB鳞茎近球形,黄褐色,根茎不明显,为盘状;叶墨绿色,柔软而平卧地面,是适于阴湿的林下环境的结果。春季萌发较早,约在3月初,其夏季休眠特性刚好可渡过华中地区东部夏季的高温多雨,待秋季温度下降时开花结实。而AA划适应了光照较强而干旱的山坡草地灌丛的类型。其发育节律变异较大,但萌动较BB晚,无夏季休眠。AABB细胞型的形态介于两祖先二倍体之间,没有形成独特的生态适应和发育节律。 3. 对AA细胞型的等位酶分析表明,该种的居群表现出较高的遗传变异(A = 2.0, P = 58.6%, H_o = 0.172 和 H_e = 0.185)。居群间存在较明显的分化(F_(ST) = 0.314)。东西两地区间也存在遗传分化。 4. AA居群间多数组合的F_1都低于对照的花粉育性和结实率。尤其是东部和西部居群间组合的F_1花粉育性和结实率极低,几近不育。如果仅仅考虑该复合体的形态变异,它只能作为一个形态复杂多变的种,Scilla sinensis (Lour) Merr.。可是如此处理就掩盖了其细胞型间清晰的进化关系。为弥补这一缺陷,当研究细胞型间的进化关系时,可采用生物学和概念。AA细胞型为S. sinensis (Lour.) Merr., 可分两亚种:subsp. sinensis 和 subsp. alboviridis (Hand.-Mazz.) K. Y. Ding。BB细胞型为S. thunbergii Miyabe et Kudo。而ABB及含有A和B染色体组的多倍体作为杂交种S. x sino-japonica K.Y.Ding。两个二倍体种形态界限很清楚,但AABB的存在湮灭了两者的间断。
Resumo:
定量重建地球生态系统的气候参数是当前国际古气候研究的目标之一. 自20世纪70年代以来, 尤其是在海洋学研究领域, 新技术的不断应用使得定量的古气候研究蓬勃发展. 相比之下陆地古气候参数的重建要困难得多, 陆地植物作为对环境的良好记录,一直备受重视. 近数十年来, 国际上广泛开展了利用植物材料定量研究气候的探索, 大量新的方法层出不穷. 德国科学家Mosbrugger和Utescher在1997年倡导的共存分析法(The Coexistence Approach)就是其中之一, 它依据现存最近亲缘类群原理以及植物分布与气候的关系原理, 找到化石植物群中各类群的现存最近亲缘类群对各气候参数的耐受范围; 并将各亲缘类群对同一气候参数的耐受范围叠加一起, 获得对该气候参数的共存区间, 用该区间作为对古气候参数的精确估测. 本文首先阐述在原文位于展开讨论的共存分析的理论基础——探讨植物分布与气候之间关系的耐受性理论. 并以此为指导, 对在该方法中气候台站的选用方法作了改进, 气象台站的选择应以植物的标本记录点为基础: 即使在某一特定的植物分布区内部也应该查看气象台站所在县级行政区域是否有该植物的标本采集信息, 并以此为依据来决定是否选用该气象台站的记录; 选用的气象台站的数量多寡应该以植物分布点的多少来决定. 以此为基础, 我们采用中国的植物分布与气象记录数据, 利用孢粉学的研究结果,定量重建了我国新生代三个地点的古气候参数, 结果如下: 1.内蒙古呼伦湖地区全新世初期气候 MAT: 4.4~10.2℃; MWMT: 22.9~24.1℃; MCMT: -18~-9.1℃; DT: 33.5~40.9℃; MAP: 354.3~686.7mm; MMaP: 103.8~191.9mm; MMiP: 2.7~7.3mm. 我们以扎赉诺尔地区的孢粉学研究为基础, 依据孢粉和盘星藻(Pediastrum Meyen)提供的环境信息并结合前人工作, 恢复了全新世初升温期的植被变化; 定量重建了10.4~10.2kaB.P.时的气候, 为全面理解呼伦湖地区的气候变化以及东亚的夏季风变化提供新的依据. 2.云南洱源上新世气候 MAT: 13.3~18.6℃; MWMT: 24.6~27.5℃; MCMT: 1.9~12.1℃; DT: 14.2~16.6℃; MAP: 619.9~1484.3mm; MMaP: 143.8~245.6mm; MMiP: 12.7~16.4mm. 该结果与羊邑、龙陵上新世古气候及三地的现代气候分析对比表明, 在上新世, 三地年均温符合纬向变化, 而降水量则基本一致. 在现代,洱源与羊邑在气候与植被上很相近, 且与上新世相差不大; 而龙陵地区则发生了显著的变化, 年均温比上新世低, 而降水量则大幅增加. 该变化指示了上新世以来作为青藏高原东部边缘的龙陵地区可能出现了地形的抬升. 3.吉林珲春始新世和中新世气候 始新世: MAT: 14.3~14.9℃; MWMT: 25~26.3℃; MCMT: 1.9~3.7℃; DT: 21.7~23℃; MAP: 797.5~1344mm; MMaP: 185.3~209.8mm; MMiP: 14.2~16.4mm. 中新世: MAT: 14.3~14.9℃; MWMT: 24.3~25.4℃; MCMT: 2.1~3.7℃; DT: 21.7~22.7℃; MAP: 658.7~817.7mm; MMaP: 158.9~174.6mm; MMiP: 7.4~7.6mm. 通过对两个时段的气候参数对比, 始新世时, 吉林珲春地区的气候属于北亚热带气候; 中新世时气候发生了改变, 归属于暖温带南部的气候, 改变了前人关于中新世也归属于被亚热带的认识, 这反映了我国东北部地区与全球新生代降温总趋势具有一定的同步性.