55 resultados para 141-861A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal conductivity of periodic composite media with spherical inclusions embedded in a homogeneous matrix is discussed. Using Green's function, we show that the Rayleigh identity can be generalized to deal with the thermal properties of these systems. A technique for calculating effective thermal conductivities is proposed. Systems with cubic symmetries (including simple cubic, body centered cubic and face centered cubic symmetry) are investigated in detail, and useful formulae for evaluating effective thermal conductivities are derived.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用普通照相和短时间曝光成像的ICCD照相技术,观测了低于大气压条件下产生的纯氩和氩-氢直流电弧等离子体射流的高温区的瞬时形貌及其变化,结合电弧弧根在阳极表面贴附行为的观测结果,对射流的稳定性与三维特性和弧根行为之间的关联进行了分析。结果表明,层流等离子体射流的高温区长度明显长于湍流射流情形,并且具有很好的轴对称性和时间稳定性;湍流射流的高温区瞬时形貌则表现出明显的三维特征;等离子体射流的三维特性与弧根在阳极表面的贴附行为没有直接的联系。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以发烟硫酸为磺化剂进行磺化反应,制备了石油磺酸盐.通过对原料性质、反应时间、反应温度对产品性能影响的考察,筛选出最佳的实验原料及制备的工艺条件.研究表明,磺化反应条件选取温度为40℃、反应时间为60min时,可以得到性能优良的石油磺酸盐产品.以海洋混合减一线油、辽河减四线油为原料制得的石油磺酸盐产品,提纯后具有较好的表面张力和界面性质.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

提出一种用于一般广义离散系统的严格真动态输出反馈H_∞控制器设计方法。首先,构造辅助广义离散系统,给出该系统的状态反馈H_∞控制器设计方法,在此基础上,用两组矩阵不等式给出使一般广义离散系统是允许的且满足H_∞范数限制的控制器存在的充分条件,并给出了控制器的解析表达式。通过解这两组矩阵不等式,即可获得所需的控制器。控制器的可解性条件由系统的系数矩阵表达,因此不需要矩阵分解,可避免由矩阵分解产生的数值问题。仿真结果证实算法的有效性。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用ANSYS有限元分析软件对永乐大钟及其悬挂支撑系统建立了有限元模型,进行了撞钟过程有限元瞬态分析及动力强度校核。通过有限元计算,获得了大钟各局部考察对象及整体的应力、位移分布情况和各部分的动力响应和对强度的影响,为合理撞钟和加固提供了科学依据与技术指导。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1.会议概况第八届国际海洋高岸与极地工程大会(The8th(1998)InternationalOffshoreandPolarEngineeringConference(ISOPE-98))于1998年5月24日~5月29日在加拿大Montreal召开.会议是由国际海洋离岸与极地工程师协会(ISOPE)会同大会技术委员会(TPC)及包括中国...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

<正> 第54届国际宇航大会于2003年9月29~10月3日在德国布莱梅召开.国际宇航大会是国际宇航联合会(IAF)、国际宇航科学院(IAA)和国际空间法律联合会联合主办的国际宇航界盛会,每年举办一届,至今已举办了54届,一直得到国际宇航领域的科学家和工程技术与管理人员的极大重视.来自世界多个国家和地区的超过2000位代表参加了会议,此次国际宇航大会共交流学术论文约 1170篇,分26个专题,分别是:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reviews firstly methods for treating low speed rarefied gas flows: the linearised Boltzmann equation, the Lattice Boltzmann method (LBM), the Navier-Stokes equation plus slip boundary conditions and the DSMC method, and discusses the difficulties in simulating low speed transitional MEMS flows, especially the internal flows. In particular, the present version of the LBM is shown unfeasible for simulation of MEMS flow in transitional regime. The information preservation (IP) method overcomes the difficulty of the statistical simulation caused by the small information to noise ratio for low speed flows by preserving the average information of the enormous number of molecules a simulated molecule represents. A kind of validation of the method is given in this paper. The specificities of the internal flows in MEMS, i.e. the low speed and the large length to width ratio, result in the problem of elliptic nature of the necessity to regulate the inlet and outlet boundary conditions that influence each other. Through the example of the IP calculation of the microchannel (thousands m ? long) flow it is shown that the adoption of the conservative scheme of the mass conservation equation and the super relaxation method resolves this problem successfully. With employment of the same measures the IP method solves the thin film air bearing problem in transitional regime for authentic hard disc write/read head length ( 1000 L m ? = ) and provides pressure distribution in full agreement with the generalized Reynolds equation, while before this the DSMC check of the validity of the Reynolds equation was done only for short ( 5 L m ? = ) drive head. The author suggests degenerate the Reynolds equation to solve the microchannel flow problem in transitional regime, thus provides a means with merit of strict kinetic theory for testing various methods intending to treat the internal MEMS flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cohesive zone characterizations of the interface between metal film and ceramic substrate at micro- and nano-scales are performed in the present research. At the nano-scale, a special potential for special material interface (Ag/MgO) is adopted to investigate the interface separation mechanism by using MD simulation, and stress-separation relationship will be obtained. At the micro-scale, peeling experiment is performed for the Al film/Al2O3 substrate system with an adhesive layer at the interface. Adhesive is a mixture of epoxy and polyimide with mass ratio 1:1, by which a brittle cohesive property is obtained. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling. The experimental result has a similar trend as modeling result for a weak adhesion interface case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microgravity research, as a branch of the advanced sciences and a spe- cialized field of high technology, has been made in China since the late 1980's. The research group investigating microgravity fluid physics consisted of our col- leagues and the authors in the Institute of Mechanics of the Chinese Academy of Sciences (CAS), and we pay special attention to the floating zone convection as our first research priority. Now, the research group has expanded and is a part of the National Microgravity Laboratory of the CAS, and the research fields have been extended to include more subjects related to microgravity science. Howev- er, the floating zone convection is still an important topic that greatly holds our research interests.

目录

1. models of floating zone convection
1.1 floating-zone crystal growth
1.2 physical model
1.3 hydrodynamic model
1.4 mathematical model
references
2. basic features of floating zone convection
2.1 equations and boundary conditions
2.2 simple solutions of fz convection
2.3 solution for two-layers flow
2.4 numerical simulation
2.5 onset of oscillation
references
3. experimental method of fz convection
3.1 ground-based simulation experiments for pr≥1
3.2 temperature and velocity oscillations
3.3 optical diagnostics of free surface oscillation
3.4 critical parameters
3.5 microgravity experiments
3.6 ground-based simulation experiment for pr《1
.references
4. mechanism on the onset of oscillatory convection
4.1 order of magnitude analysis
4.2 mechanism of hydrothermal instability
4.3 linear stability analysis
4.4 energy instability of thermocapillary convection
4.5 unsteady numerical simulation of 2d and 3d
4.6 two bifurcation transitions in the case of small pr number fluid
4.7 two bifurcation transitions in the case of large pr number fluid
4.8 transition to turbulence
references
5. liquid bridge volume as a critical geometrical parameter
5.1 critical geometrical parameters
5.2 ground-based and mierogravity experiments
5.3 instability analyses of a large prandtl number (pr≥1)fluid
5.4 instability analyses of a small prandtl number (pr《1)fluid
5.5 numerical simulation on two bifurcation process
references
6. theoretical model of crystal growth by the floating zone method
6.1 concentration distribution in a pure diffusion process
6.2 solutal capillary convection and diffusion
6.3 coupling with phase change convection
6.4 engineering model of floating zone technique
references
7. influence of applied magnetic field on the fz convection
7.1 striation due to the time-dependent convection
7.2 applied steady magnetic field and rotational magnetic field
7.3 magnetic field design for floating half zone
7.4 influence of magnetic field on segregation
references
8. influence of residual acceleration and g-jitter
8.1 residual acceleration in microgravity experiments
8.2 order of magnitude analyses (oma)
8.3 rayleigh instability due to residual acceleration
8.4 ground-based experiment affected by a vibration field
8.5 numerical simulation of a low frequency g-jitter
8.6 numerical simulation of a high frequency g-jitter
references

Relevância:

10.00% 10.00%

Publicador:

Resumo:

目录

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical parametric chirped pulse amplification with different pump wavelengths was investigated using LBO crystal, at signal central wavelength of 800 nm. According to our theoretical simulation, when pump wavelength is 492.5 nm, there is a maximal gain bandwidth of 190 nm. centered at 805 nm in optimal noncollinear angle using LBO. Presently, pump wavelength of 492.5 nm can be obtained from second harmonic generation of a Yb:Sr-5(PO4)(3)F laser. The broad gain bandwidth can completely support similar to 6 fs with a spectral centre of seed pulse at 800 nm. The deviation from optimal noncollinear angle can be compensated by accurately tuning crystal angle for phase matching. The gain spectrum with pump wavelength of 492.5 nm is much better than those with pump wavelengths of 400, 526.5 and 532 nm, at signal centre of 800 nm. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

20 at.% Yb:YAG single crystals have been grown by the CZ method and gamma-ray irradiation induced color centers and valence change of Fe3+ and Yb3+ ions in Yb:YAG have been studied. One significant 255 nm absorption band was observed in as-grown crystals and was attributed to Fe3+ ions. Two additional absorption (AA) bands located at 255 nm and 345 nm, respectively, were produced after gamma irradiation. The changes in the AA spectra after gamma irradiation and air annealing are mainly related to the charge exchange of the Fe3+, Fe2+, oxygen vacancies and F-type color centers. Analysis shows that the broad AA band is associated with Fe2+ ions and F-type color centers. The transition Yb3+ Yb2+ takes place as an effect of recharging of one of the Yb3+ ions from a pair in the process of gamma irradiation. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the single-shot damage in magnesium fluoride irradiated by 800 nm femtosecond (fs) laser. The dependence of damage thresholds on the laser pulse durations from 60 to 750 fs was measured. The pump-probe measurements were carried out to investigate the time-resolved electronic excitation processes. A coupled dynamic model was applied to study the microprocesses in the interaction between fs laser and magnesium fluoride. The results indicate that both multiphoton ionization and avalanche ionization play important roles in the femtosecond laser-induced damage in MgF2. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simple route for ZnSe nanowire growth in the ablation crater on a ZnSe crystal surface. The crystal wafer, which was horizontally dipped in pure water, was irradiated by femtosecond laser pulses. No furnace, vacuum chamber or any metal catalyst were used in this experiment. The size of the nanowires is about 1-3 mu m long and 50-150 nm in diameter. The growth rate is 1-3 mu m/s, which is much higher than that achieved with molecular-beam epitaxy and chemical vapor deposition methods. Our discovery reveals a rapid and simple way to grow nanowires on designed micro-patterns, which may have potential applications in microscopic optoelectronics. (C) 2007 Elsevier Ltd. All rights reserved.