641 resultados para SIO2
Resumo:
Transparent Li2O-Ga2O3-SiO2 glass ceramics containing Cr3+/Ni2+ codoped LiGa5O8 nanocrystals were synthesized. The steady state emission spectra indicated that the near-infrared emission intensity of Ni2+ at 1300 nm in Cr3+/Ni2+ codoped glass ceramics was enhanced up to about 7.3 times compared with that in Ni2+ single-doped glass ceramics with 532 nm excitation. This enhancement in emission intensity was due to efficient energy transfer from Cr3+ to Ni2+, which was confirmed by time-resolved emission spectra. The energy transfer efficiency was estimated to be 85% and the energy transfer mechanism was discussed. (C) 2008 American Institute of Physics.
Resumo:
Porous glass with high-SiO2 content was impregnated with Nd ions, and subsequently sintered at 1100 degrees C into a compact non-porous glass in air or reducing atmosphere. Sintering in a reducing atmosphere produced an intense violet-blue fluorescence at 394 nm. However, the sintering atmospheres almost did not affect the fluorescence properties in the infrared range. A good performance Nd3+-doped silica microchip laser operating at 1064 nm was demonstrated. The Nd-doped sintering glasses with high-SiO2 content are potential host materials for high power solid-state lasers and new transparent fluorescence materials. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we report on the multicolor luminescence in oxygen-deficient Tb3+-doped calcium aluminogermanate glasses. A simple method was proposed to control oxygen-deficient defects in glasses by adding metal Al instead of the corresponding oxide (Al2O3), resulting in efficient blue and red emissions from Tb3+-undoped glasses with 300 and 380 nm excitation wavelengths, respectively. Moreover, in Tb3+-doped oxygen-deficient glasses, bright three-color (sky-blue, green or yellow, and red) luminescence was observed with 300, 380, and 395 nm excitation wavelengths, respectively. These glasses are useful for the fabrication of white light-emitting diode (LED) lighting.
Resumo:
Transparent Ni2+-doped MgO-Al2O3-Ga2O3-SiO2-TiO2 glass ceramics were fabricated. The precipitated nanocrystal phase in the glass ceramics was identified by X-ray diffraction and transmission electron microscope. Broadband near-infrared emission centered at 1220 nm with full width at half maximum of about 240 nm and lifetime of about 250 mu s was observed with 980 nm excitation. The longer wavelength emission compared with Ni2+-doped MgAl2O4 crystal was attributed to the low crystal field occupied by Ni2+ in the glass ceramics. The present Ni2+-doped transparent glass ceramics may have potential applications in broadband optical amplifiers. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
New broadband near infrared luminescence covering the whole work windows (1260-1625 nm) of the current wavelength division multiplexing (WDM) system was found from bismuth-activated M2O-Al2O3-SiO2 (M = Li, Na) and Li2O-Ta2O5-SiO2 glasses at room temperature in the case of 808 nm-laser excitation. But the near infrared luminescence mechanism of the bismuth-activated glasses is not well understood up to now. The figure-of-merits of bandwidth and gain of the glasses are better than those of Er3+-doped silicate glasses and Ti3+ doped sapphire, implying they are the promising gain-medium candidates for the broadband amplifiers and the widely tunable laser sources. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
研究了Na2O含量对Na2O-Al2O3-SiO2(NAS)玻璃的光谱性质的影响。利用Judd-Ofelt(J-O)理论和吸收光谱计算了Er^3+掺杂的铝硅酸盐玻璃的Ωt参数、自发辐射几率和自发辐射寿命,分析了Ωt参数与Na2O含量的关系以及与吸收截面,Er^3+离子^4I13 2能级的自发辐射几率和荧光半峰全宽(FWHM)等性质的关系。随Na2O含量的增加.J-O参数Ωt(t=2,4,6)减小,Er^3+离子1533nm的吸收截面和荧光半峰全宽.Er^3+离子^4I13 2能级的自发辐射几率也减小,而E
Resumo:
The broadband luminescence covering 1.2-1.6 mu m was observed from bismuth and aluminum co-doped germanium oxide glasses pumped by 808 nm laser at room temperature. The spectroscopic properties of GeO2:Bi,Al glasses strongly depend on the glass compositions and the pumping sources. To a certain extent, the Al3+ ions play as dispersing reagent for the infrared-emission centers in the GeO2:Bi,Al glasses. The broad infrared luminescence with a full width at half maximum larger than 200 nm and a lifetime longer than 200 mu s possesses these glasses with the potential applications in broadly tunable laser sources and ultra-broadband fiber amplifiers in optical communication field. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
将SiO2含量超过97wt%的具有纳米级微孔的多孔高硅氧玻璃浸泡在含有Nd^3+离子的溶液后取出,在1100℃烧结成透明无孔高硅氧玻璃。在800nm的激光抽运下,这种Nd^3+离子掺杂的高硅氧玻璃微片激光器实现了斜率效率为62%,光-光转换效率为42%,波长为1064nm的激光输出。
Resumo:
We report what we believe to be the first demonstration of laser operation with a novel laser material of Yb3(+) -doped Gd-2 SiO2 (Yb: GSO) pumped by a laser diode at 940 nm. We obtained a low lasing threshold of 1.27 kW/cm(2) with the center wavelength of 1090 nm, which is lower than the value of 1.53 kW/cm(2) predicted for Yb: YAG. The maximal output power of 360 mW was obtained with a 2% output, which corresponds to a slope efficiency up to 19%.
Resumo:
A compact nonporous high silica (SiO2 % > 96%) glass containing 3400 ppm Er3+ ions, which was about ten times higher than that in Er-doped silica fiber amplifier (EDSFA), was synthesized by sintering porous glass immersed into erbium nitrate solution. The 1532 nm fluorescence has a FWHM (Full Width at Half Maximum) of 45 nm wider than that of EDSFA and possesses the glass with potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that Er3+ ions are located in a higher covalent environment which are comparable to those of aluminosilicate glass. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new kind of Nd3+, -doped high silica glass (SiO2 > 96% (mass fraction)) was obtained by sintering porous glass impregnated with Nd3+, ions. The absorption and luminescence properties of high silica glass doped with different Nd3+, concentrations were studied. The intensity parameters Omega(t) (t = 2, 4, 6), spontaneous emission probability, fluorescence lifetime, radiative quantum efficiency, fluorescence branching ratio, and stimulated emission cross section were calculated using the Judd-Ofelt theory. The optimal Nd3+ concentration in high silica glass was 0.27% (mole fraction) because of its high quantum efficiency and emission intensity. By comparing the spectroscopic parameters with other Nd3+ doped oxide glasses and commercial silicate glasses, the Nd3+-doped high silica glasses are likely to be a promising material used for high power and high repetition rate lasers.
Resumo:
A new method was used to prepare erbium-doped high silica (SiO2% > 96%) glasses by sintering nanoporous glasses. The concentration of erbium ions in high silica glasses can be considerably more than that in silica glasses prepared by using conventional methods. The fluorescence of 1532 nm has an FWHM (Full Wave at Half Maximum) of 50 nm, wider than 35 nm of EDSFA (erbium-doped silica fiber amplifer), and hence the glass possesses potential application in broadband fiber amplifiers. The Judd-Ofelt theoretical analysis reflects that the quantum efficiency of this erbium-doped glass is about 0.78, although the erbium concentration in this glass (6 x 103) is about twenty times higher than that in silica glass. These excellent characteristics of Er-doped high silica glass will be conducive to its usage in optical amplifiers and microchip lasers.
Resumo:
We show, using spatially resolved energy loss spectroscopy in a transmission electron microscopy (TEM), that GeO2 and GeO2-SiO2 glasses are extremely sensitive to high energy electrons. Ge nanoparticles can be precipitated in GeO2 glasses efficiently by the high-energy electron beam of a TEM. This is relevant to TEM characterization of luminescent Ge nanoparticles in silicate glasses, which may produce artificial results. (C) 2005 American Institute of Physics.
Resumo:
阐述了用光学薄膜进行色散补偿的基本原理,介绍了设计的基本过程.根据Ti:Sapphire飞秒激光器中腔内色散补偿的要求,设定了色散补偿目标,通过计算机优化,得到了一种40层的Ta2O5/SiO2介质膜系.该膜系能在720~870am范围获得大于99.5%的反射率,在510~550nm获得大于90%的透射率,在740~850nm提供较平滑的-40fs^2的群延迟色散.这样的结果经过7次反射后,可以补偿5-mm Ti:sapphire晶体产生的绝大部分群延迟色散。
Resumo:
Two different kinds of 1064 nm high-reflective (HR) coatings, with and without SiO2 protective layer, were prepared by electron beam evaporation. Three-dimensional damage morphology, caused by a Nd:YAG pulsed laser, was investigated for these HR coatings. Development of laser-induced damage on HR coatings was revealed by both temperature field calculation and discrete meso-element simulation. Theoretical results met experimental very well. (C) 2004 Elsevier B.V. All rights reserved.