384 resultados para waveguide tapers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extraordinary transmission of the subwavelength gold grating has been investigated by the rigorous coupled-wave analysis and verified by the metal-insulator-metal plasmonic waveguide method. The physical mechanisms of the extraordinary transmission are characterized as the excitation of the surface plasmon polariton modes. The subwavelength grating integrated with the distributed Bragg reflector is proposed to modulate the phase to realize spatial mode selection, which is prospected to be applied for transverse mode selection in the vertical cavity surface-emitting laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of quantum cascade laser at 2.94 THz is reported. The laser structure is based on a bound-to-continuum active region and a semi-insulating surface-plasmon waveguide. Lasing is observed up to a heat-sink temperature of 70 K in pulsed mode with light power of 4.75 mW at 10 K and 1 mW at 70 K. A threshold current density of 296.5 A/cm(2) and an internal quantum efficiency of 1.57 x 10(-2) per cascade period are also observed at 10 K. The characteristic temperature of this laser is extracted to be T-0 = 57.5 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate surface emitting distributed feedback quantum cascade lasers emitting at wavelengths from 8.1 mu m at 90 K to 8.4 mu m at 210 K. The second-order metalized grating is carefully designed using a modified coupled-mode theory and fabricated by contact lithography. The devices show single mode behavior with a side mode suppression ratio above 18 dB at all working temperatures. At 90 K, the device emits an optical power of 101 mW from the surface and 199 mW from the edge. In addition, a double-lobe far-field pattern with a separation of 2.2 degrees is obtained in the direction along the waveguide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A broadly tunable and high-power grating-coupled external cavity laser with a tuning range of more than 200 nm and a similar to 200-mW maximum output power was realized, by utilizing a gain device with the chirped multiple quantum-dot (QD) active layers and bent waveguide structure. The chirped QD active medium, which consists of QD layers with InGaAs strain-reducing layers different in thickness, is beneficial to the broadening of the material gain spectrum. The bent waveguide structure and facet antireflection coating are both effective for the suppression of inner-cavity lasing under large injection current.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

City Univ Hong Kong

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在信息产业、生物医学等科技领域越来越受关注的今天,新型光电子、光通信科技必将以更快的速度发展。Si基光电子集成采用成熟价廉的微电子加工工艺,将光学器件与多种功能的微电子电路集成,是实现光通信普及发展和光互连的有效途径。Si基光电探测器是Si基光通信系统的关键器件之一。随着近年来Si基Ge材料外延技术的突破性进展,Si基Ge光电探测器因为兼顾了Si基光电子集成和对光通讯波段(1.31和1.55μm)的高效探测,成为了当今研究的一大热点。
    
半导体光电探测器的性能与其结构密切相关。PIN型光电探测器是最常见的探测器,可以普遍应用于光通讯光互连系统;雪崩光电二极管(APD)因为具有较高的响应度和内部增益,在实现单光子探测方面具备很大的优越性,适用于当今迅猛发展的生物光子学和量子信息学;共振腔增强型的光电探测器(RCE-PD),集波长选择器、高速光信号接收器于一体,而且具备共振增强作用、高饱和功率输出等特点,是局域网、光纤入户和现代波分复用(Wavelength-Division Multiplexing,WDM)系统光通信网络的一种优选方案;波导结构探测器(Waveguide-PD)可以解除探测器的响应带宽和量子效率之间的矛盾,而且其结构特点更易于实现与调制器等光波导器件的集成,是片上光互连的首选探测器。
   
本论文围绕高性能Si基Ge光电探测器这一研究目标,开展了多种结构的光电探测器的研制,包括PIN型PD的研制及其优化、吸收区与倍增区分离结构(SACM)的Ge-on-Si APD、RCE-PD和Waveguide-PD,主要研究结果如下:

1.                成功研制了PIN型Ge-on-Si光电探测器,器件在-1V外加偏压下暗电流密度为46.6mA/cm2,在1.31μm和1.55μm波长下器件的量子效率分别为40%和17%;然后改进了实验方法,在制作器件之前将Ge-on-Si材料在850℃条件下快速退火1分钟,从而改善材料质量,器件的暗电流密度降低至4mA/cm2,这是目前国际上报道的最好结果之一。

2.                研制出了PIN型Ge-on-SOI光电探测器,在1.31μm和1.55μm波长的量子效率分别为62%和25%。在-3V外加偏压下,器件的3dB带宽为12.6GHz。25μm直径器件,3dB带宽更是达到了13.4GHz。同时,制作了均匀性很好的1×4探测器阵列,单个器件的3dB带宽达13.3GHz。

3.                在国际上首次研究了硅基锗光电探测器的高饱和特性。在-1V和-2V外加偏压下,探测器的1-dB小信号压缩电流分别为22mA和40mA,相应的光功率分别为67.5mW和110.5mW。

4.                成功研制了吸收区和倍增区分离的Si基Ge雪崩光电二极管,器件的穿通电压Vpt约为29V,击穿电压Vbd(暗电流等于100μA时的电压)为39.5V。在击穿电压附近,如39V时,SACM-Ge-on-Si APD的增益为40。

5.                解决了背面ICP深刻蚀工艺难题,成功制备了中心波长在1.55μm,量子效应高达62%的共振腔增强型Si基Ge光电探测器。

提出一种横向波导型结构Ge-on-SOI光电探测器结构,并对该结构探测器进行了理论计算。