400 resultados para self-assembled structure
Resumo:
Scanned probe oxidation (SPO) nanolithography has been performed with an atomic force microscope (AFM) on an octadecyl-terminated silicon (111) surface to create protuberant oxide line patterns under ambient conditions in contact mode. The kinetic investigations of this SPO process indicate that the oxide line height increases linearly with applied voltage and decreases logarithmically with writing, speed. The oxide line width also tends to vary with the same law. The ambient humidity and the AFM tip state can remarkably influence this process, too. As compared with traditional octadecylsilated SiO2/Si substrate, such a substrate can guarantee the SPO with an obviously lowered voltage and a greatly increased writing speed. This study demonstrates that such alkylated silicon is a promising silicon-based substrate material for SPO nanolithography.
Resumo:
A layer-by-layer (LbL) adsorption and polymerization method was developed for the controllable preparation of polypyrrole (PPy) nanoparticles within ultrathin films. By repetitive adsorption of pyrrole and subsequent polymerization with 12-molybdophosphoric acid, the polyelectrolyte multilayer films containing PPy nanoparticles were fabricated. UV-visible absorption spectrocopy, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and cyclic voltammograras (CVs) were used to characterize the PPy nanoparticles and their multilayer thin films. UV-visible spectra indicate that the growth of PPy nanoparticles was regular and occurred within the polyelectrolyte films. The size of prepared PPy nanoparticles was found by TEM to increase with the increasing of polymerization cycles. The electrochemistry behavior of the multilayer thin films was studied in detail on ITO. The results suggest that the LbL adsorption and polymerization method developed herein provides an effective way to prepare PPy nanoparticles in the polymer matrix.
Resumo:
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (Phi = 16 nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.
Resumo:
A novel third-generation hydrogen peroxide (H2O2) biosensor was developed by immobilizing horseradish peroxidase (HRP) on a biocompatible gold electrode modified with a well-ordered, self-assembled DNA film. Cysteamine was first self-assembled on a gold electrode to provide an interface for the assembly of DNA molecules. Then DNA was chemisorbed onto the self-assembled monolayers (SAMs) of cysteamine to form a network by controlling DNA concentration. The DNA-network film obtained provided a biocompatible microenvironment for enzyme molecules, greatly amplified the coverage of HRP molecules on the electrode surface, and most importantly could act as a charge carrier which facilitated the electron transfer between HRP and the electrode. Finally, HRP was adsorbed on the DNA-network film. The process of the biosensor construction was followed by atomic force microscopy (AFM). Voltammetric and time-based amperometric techniques were employed to characterize the properties of the biosensor derived. The enzyme electrode achieved 95% of the steady-state current within 2 s and had a 0.5 mu mol l(-1) detection limit of H2O2. Furthermore, the biosensor showed high sensitivity, good reproducibility, and excellent long-term stability.
Resumo:
Multilayers of anionic phosphotungstic acid (PTA) clusters and positively charged protonated poly(allylamine hydrochloride) (PAH) were assembled by layer-by-layer self-assembled method on Au electrode modified by 3-mercaptopropionic acid (3-MPA). The effect of the charge of the surface of the multilayer assembly on the kinetics of the charge transfer reaction was studied by using the redox probes [Fe(CN)(6)](3-)/(4-) [Ru(NH3)(6)](2+/3+). The cyclic voltammetry experiments showed that the peak currents and peak-to-peak potential differences changed after assembling different layers on the electrode surface indicating that the charge of the surface has a significant effect on the kinetics of the studied charge transfer reactions. These reactions were studied in more detail by electrochemical impedance spectroscopy. When [Fe(CN)(6)](3-/-) was used as the redox label, multilayers that terminated with negatively charged PTA showed a high charge transfer resistance but multilayers that terminated with positively charged PAH showed lower charge transfer resistance. With [Ru(NH3)(6)](2+/3+) as the redox label, the charge transfer resistance at multilayers that terminated with positively charged PAH was much higher than at the multilayer terminated by the negatively charged PTA.
Resumo:
In this article, we firstly reported on the synthesis and characterization of ultratine CeF3 nanoparticles (NPs) modified by catanionic surfactant via a reverse micelles-based route. The catanionic surfactant PN was prepared by mixing the di(2-ethylhexyl) phosphoric acid (DEHPA) and primary amine (N1923) with 1:1 molar ratio. It exhibited a high surface activity and formed much small reverse micelles in comparison with its individual component (DEHPA or N1923). The PN reverse micelles were then used as templates to prepare ultrafine CeF3 NPs. The narrow distributed nanoparticles have an average diameter 1.8 nm. FTIR spectra indicated that there existed strong chemical interactions between nanoparticles and the adsorbed surfactants. The modification resulted in the FFIR peak position of P=O shifting to lower energy. Due to the effect of modification and small size, the CeF3 NPs showed a remarkable red shift of 54 mn in the fluorescence emission in comparison with that of bulk material and a red shift of 18 nm in contrast with that of the normal CeF3 NPs with an average diameter of 16 nm.
Resumo:
Mercaptoethane sulfonate protected, water-soluble gold and silver nanoparticles (Au-MES and Ag-MES) are synthesized by one-phase method and characterized by TEM, TGA and XPS techniques, UV-vis and FTIR spectra. Both Au-MES and Ag-MES nanoparticles are soluble in the water up to 2.0 mg/ml and the stability of AU-MES is much better than that of Ag-MES. When dissolved in the water. they behave like a polyanion and can be used to build multilayer films with polyaniline (PANI) by way of layer-by-layer. A new approach is presented to fabricate the Multilayer films of Au-MES/PANI and Ag-MES/PAN]. The assembly mechanism of these multilayer films is also discussed. We anticipate highly conducting PANI films can be obtained by doping with these nanoparticles.
Resumo:
A novel self-assembled layer consisting of water tetramers and nitrate anions has been observed in the [Co(1,10-phenanthroline)(2)(NO3)]center dot(NO)(3)center dot 4H(2)O complex. X-ray crystallography and FT-IR spectroscopy indicate that although the water tetramers exist in an energetically less stable uudd configuration, the anionic host environments may play an important role in the formation and stabilization of the water clusters.
Resumo:
Surface replacement reaction of thiol-derivatized, single-stranded oligonucleotide (HS-ssDNA) by mercaptohexanol (MCH) is investigated in order to reduce surface density of the HS-ssDNA adsorbed to Au(111) surface. Cyclic voltammograms (CVs) and scanning tunneling microscopy (STM) are employed to assess the composition and state of these mixed monolayers. It is found that each CV of mixed self-assembled monolayers (SAMs) only shows a single reductive desorption peak, which suggests that the resulted, mixed SAMs do not form discernable phase-separated domains. The peak potential gradually shifts to negative direction and the peak area increases step by step over the whole replacement process. By analyzing these peak areas, it is concluded that two MCH molecules will replace one HS-ssDNA molecule and relative coverage can also be estimated as a function of exposing time. The possible mechanism of the replacement reaction is also proposed. The DNA surface density exponentially reduces with the exposing time increasing, in other words, the replacement reaction is very fast in the first several hours and then gradually slows down. Moreover, the morphological change in the process is also followed by STM.
Resumo:
The electrochemical polymerization of 0.01 M aniline in 1 M H2SO4 aqueous solution on roughened Au surface modified with a self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) has been investigated by in situ electrochemical surface-enhanced Raman scattering spectroscopy (SERS). The repeat units and possible structures of the electrodeposited polyaniline (PANI) film were proposed; i.e., aniline monomer is coupled in head-to-tail predominately at the C-4 of aniline and amine of 4-ATP, and the thin PANI film is orientated vertically to substrate surface. Simultaneous Raman spectra during potential scanning indicate clearly that the ultrathin PANI film (in initial growth of the film) consists of semiquinone radical cation (IP+), para-disubstituted benzene (IP and IP+) and quinine diimine (NP) while it is oxidized, and without quinine diimine and semiquinone radical cation while reduced. Meanwhile, the results confirm that 4-ATP monolayer shows a strong promotion on the electrodeposition of aniline monomer, and a possible polymerization mechanism was proposed.
Resumo:
A combination of microcontact printing and block copolymer nanoreactors succeeded in fabricating arrays of silver nanoparticle aggregates. A complex solution of polystyrene-block-poly(4-vinylpyridine) micelles and silver salt was used as an ink to form thin films or droplets on polydimethylsiloxane stamp protrusions. After these complex aggregates were printed onto silicon substrates under controlled conditions, highly ordered arrays of disklike, dishlike, and dotlike complex aggregates were obtained. A Subsequent oxygen reactive ion etching treatment yielded arrays of silver nanoparticle aggregates.
Resumo:
The growth of cationic lipid dioctadecyldimethylammonium bromide (DODAB) toward bilayer lipid membrane (BLM) by solution spreading on cleaved mica surface was studied by atomic force microscopy (AFM). Bilayer of DODAB was formed by exposing mica to a solution of DODAB in chloroform and subsequently immersing into potassium chloride solution for film developing. AFM studies showed that at the initial stage of the growth, the adsorbed molecules exhibited the small fractal-like aggregates. These aggregates grew up and expanded laterally into larger patches with time and experienced from monolayer to bilayer, finally a close-packed bilayer film (5.4 +/- 0.2 nm) was approached. AFM results of the film growth process indicated a growth mechanism of nucleation, growth and coalescence of dense submonolayer, it revealed the direct information about the film morphology and confirmed that solution spreading was an effective technique to prepare a cationic bilayer in a short time.
Resumo:
Monolayer protected gold nanoparticles (MPCs) are the focus of recent research for their stability and are deemed as the building blocks of bottom-up strategies. In this Letter, 3-mercapto-1,2-propanediol monolayer protected gold nanoparticles (MPD-MPCs) were synthesized and characterized by transmission electron microscopy, UV/Vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The value of quantized double-layer capacitance (1.13 aF) of MPD-MPCs in aqueous media was obtained by differential pulse voltammograms.
Resumo:
3-Mercaptopropionic add monolayer protected gold nanoclusters (MPA-MPCs) were synthesized and characterized by transmission electron microscopy, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The exact value of quantized double-layer capacitance of MPCS in aqueous media was obtained by differential pulse voltammograms.
Resumo:
An inherently disorganized self-assembled monolayer (SAM) of 2-mercapto-3-n-octylthiophene (MOT) has been formed on a gold bead electrode from its dilute ethanolic solution. The disorganization of the monolayer is attributed to the loose packing of the aliphatic chains of the MOT adsorbates, which results from a large difference in dimension/or cross-sectional area between the head (thiophene thiolate) and the tail (alkane chain) groups. Electrochemical measurements including ac impedance spectroscopy and metal underpotential deposition have shown that the monolayer is almost pinhole free. However, the MOT SAM can be penetrated by an organic probe molecule with affinity for the alkane chain part of the monolayer. Some typical probe molecules with different size and hydrophilicity have been employed to assess the permselectivity of the monolayer. Measurement results demonstrate that the ability of the employed probe molecules to penetrate into the monoalyer is mainly dominated by their hydrophilicity/or hydrophobicity. The results presented here suggest the potential application of MOT monoalyer to effectively modify the electrode surface for several research areas such as electrochemical sensors, electrocatalysis, electroanalysis, and supported hybrid bilayer membranes.