375 resultados para film de famille
Resumo:
A novel terbium complex, Tb(acac)(3)AAP (acac: acetylacetone, AAP: 4-amino-antipyrine), was synthesized and its luminescent properties were studied. When it was used as an emitting center, triple-layer-type device with a structure of glass substrate/ITO (indium-tin oxide)/TPD (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine)./Tb(acac)(3)AAP/PBD (2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole) or Alq(3) (tris(8-hydroxyquinolinato) aluminum)/Al (aluminum) exhibited bright characteristic emission of terbium ion upon applying d.c. voltage. The maximum luminance of the device is 56 cd/m(2) at 19 V and the maximum luminance efficiency is 0.357 lm/W.
Resumo:
highly organized phenyl-capped teraniline (PC-teraniline) film at the molecular level was fabricated on carbon surfaces by electrochemical reduction of diazonium salts. Cyclic voltammetry (CV). scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS) were employed for the characterization of the film.
Resumo:
A transparent thin film was prepared by depositing the sol-get mixture for the synthesis of MCM-41 mesoporous molecular sieve doped with rhodamine 6G (R6G) dye on glass substrates. The film of silica-surfactant-R6G materials, which was identified to possess hexagonally ordered mesostructure, was composed of nanocrystallites about 35 nm in diameter and 1-10 mum in thickness. Cleanness of the substrates, concentration of the sol-gel mixture and rate of evaporation of the solvent were the key factors affecting transparency and homogeneity of the film. Moreover, optical change and lack in dye aggregation were observed to the R6G-functionalized MCM-41 thin film in contrast with that in ethanol solution.
Resumo:
An optical fiber bienzyme sensor based on the luminol chemiluminescent reaction was developed and demonstrated to be sensitive to glucose. Glucose oxidase (GOD) and horseradish peroxidase (HRP) were co-immobilized by microencapsulation in a sol-gel film derived from tetraethyl orthosilicate(TEOS). The calibration plots for glucose were established by the optical fiber glucose sensor fabricated by attaching the bienzyme silica gel onto the glass window of the fiber bundle. The linear range was 0.2-2 mmol/L and the detection limit was approximately 0.12 mmol/L. The relative standard deviation was 5.3% (n = 6). The proposed biosensor was applied to glucose assay in ofloxacin injection successfully.
Resumo:
The ferrocene-lipid film electrode was successfully prepared by means of casting the solution of ferrocene and lipid in chloroform onto a glassy carbon (GC) electrode surface. Ferrocene saved in the biological membrane gave a couple of quasi-reversible peaks of cyclic voltammogram. The electrode displays a preferential electrocatalytic oxidation of dopamine (DA). The effect of electroccatalytic oxidation of DA depends on the solution pH and the negative charge lipid is in favor of catalytic oxidation of DA. The characteristic was employed for separating the electrochemical responses of DA and ascorbic acid (AA). The electrode was assessed for the voltammetric differentiation of DA and AA. The measurement of DA can be achieved with differential pulse voltammetry in the, presence of high concentration of AA. The catalytic peak current was proportional to the concentration of DA in the range of 1 x 10(-4)-3 x 10(-3) mol/L.
Resumo:
The formation process of monolayer of octa-n-butoxy-2,3-naphthalocyanine copper ( I), [CuNc(OBu)(8)], on water subphase was studied. Its multilayers were successifully deposited on the hydrophilic substrates by Z-type deposition mode using LB technique. Stable solid film with a limiting molecular area of 0.74 nm(2) and a collapse pressure of 55 mN/m were formed. The LB film structure was characterized by IR and electronic absorption spectra. Macrocycle of CuNc (OBu)(8) molecules have a face-to-face arrangement in the multilayers. These films have good sensitivities to vapor of alcohols, with the following sequence of sensitivities: i-PrOH>EtOH>MeOH. The response time and recovery time of the LB films to vapor of MeOH, EtOH and i-PrOH[volume fraction (1-5) X 10(-5)] were within 2 and 5 seconds respectively, while those of the LB films to ammonia(1 X 10(-4)) were 30-60 seconds and 4-5 minutes respectively.
Resumo:
A nanoparticulate ferric oxide-copper tris(2,4-di-tert-amylphenoxy)-8-quinolinolylphthalocyanine hybrid ultrathin film was constructed from alternate layers by the Langmuir-Blodgett technique. The composition, morphology and structure of the film were studied by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy, atomic force microscopy, small-angle X-ray diffraction, visible spectroscopy and polarized UV-Vis spectroscopy. All the above analyses suggest that the thin film is a kind of one-dimensional superlattice, composed of organic and inorganic components. The XPS data reveal that the nanoparticulate ferric oxide exists as an alpha-Fe2O3 phase in the films. Gas-sensing measurements show that the hybrid LB film has very fast response-recovery characteristics towards 2 ppm C2H5OH vapor.
Resumo:
Nanoparticulate ferric oxide - tris - (2,4-di-t-amylphenoxy) - (8-quinolinolyl) copper phthalocyanine Langmuir-Blodgett Z-type multilayers were obtained by using monodisperse nanoparticle ferric oxide hydrosol as the subphase. XPS data reveal that the nanoparticle ferric oxide exist as alpha -Fe2O3 phase in the films. Transition electron microscopic (TEM) image of the alternating monolayer shows that the film was highly covered by the copper phthalocyanine derivative and the nanoparticles were arranged rather closely. IR and visible spectra all give the results that the nanoparticles were deposited onto the substrate with the copper phthalocyanine derivative. The gas-sensing measurements show that the alternating LB film had very fast response-recovery characteristic to 2 ppm C2H5OH gas, and also sensitive to larger than 200 ppm NH3.
Resumo:
A sol-gel approach has been developed to prepare polyimide-TiO2, hybrid films fi om soluble polyimides and a modified titanium precursor. The rate of the hydrolysis reaction of titanium alkoxide can be controlled by using acetic acid as a modifier. FTIR and XPS indicated that TiO2, particles were well distributed in polyimide matrixes with particle size small per than 60 nm. Polyimide hybrid films having the TiO2, component less than or equal to 10% exhibited high thermal stability, high optical transparency and good mechanical properties and possessed higher dielectric constants than correspondingly polyimides. (C) 2000 Society of Chemical Industry.
Resumo:
An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Electroluminescent (EL) devices based on a soluble complex Tb(MDP)(3) [Tris-(monododecyl phthalate)Terbium] doped with poly (N-vinylcarbazole) (PVK), (2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole) (PBD) were fabricated. The device structures of ITO/PVK/PVK:PBD:Tb(MDp)(2)/Aiq(3)/Al and ITO/PVK:PBD:Tb(MDP)(3)/Alq(3)/Al were employed. The Tb(MDP), as emissive layer was spin-coated. The EL cell exhibited characteristic emission of terbium ion. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Conducting layers on KrF excimer-laser-irradiated polyimide film surfaces were investigated by XPS, SEM and Fourier transform infrared (FTIR)-Raman spectroscopy, Analysis of polyimide residue after laser irradiation provided valuable insight into the nature of the formation of conducting layers. The subtle different between KrF laser irradiation and the pyrolysis of polyimide was found by comparison of the formation process of conducting layers. A physical picture was presented to describe better the formation of conducting layers. Under KrF laser irradiation, polyimide films underwent thermal decomposition assisted by photoinduced direct bond breaking. Polycrystalline graphite was subsequently formed as the product of the secondary addition reaction of carbon-enriched clusters, Such reaction was supported by the remaining energy on the irradiated polyimide film surface. This result shows that the thermal process played an important role that was not just restricted to the formation of conducting layers, Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
Stable monolayer of polyaniline doped with camphor sulfonic acid at the air-water interface has been obtained and has been successfully deposited by Langmuir-Blodgett technique onto CaF2 substrate. IR and UV-Vis-NIR spectra show that the doped molecules dedoped partially from the PANI backbone during the monolayer compression or deposition. Gas-sensing measurement indicates that the doped polyaniline LB film was sensitive to ethanol vapor at room temperature.
Resumo:
A novel glucose biosensor based on cast lipid film was developed. This model of biological membrane was used to supply a biological environment on the surface of the electrode, moreover it could greatly reduce the interference and effectively exclude hydrophilic electroactive material from reaching the detecting surface. TTF was selected as a mediator because of its high electron-transfer efficiency, and it was incorporated in the lipid film firmly. Glucose oxidase was immobilized in hydrogel covered on the lipid film. The effects of pH, operating potential were explored for the optimum analytical performance by using amperometric method. The response time of the biosensor was less than 20 s, and the linear range is up to 10 mmol l(-1) (corr. coeff. 0.9932) with the detection limit of 2 x 10(-5) mol l(-1). The biosensor also exihibited good stability and reproducibility. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The preparation, structure, and electrochemical and electrocatalytical properties of a new polyoxometalate-based organic/inorganic film, composed of cetyl pyridinum 11-molybdovanadoarsenate (CPMVA) molecules, have been studied. Cyclic potential scanning in acetone solution led to a stable CPMVA film formed on a highly oriented pyrolytic graphite (HOPG) surface. X-ray photoelectron spectroscopy, scanning tunneling microscopy, and cyclic voltammetry were used for characterizing the structure and properties of the CPMVA film. These studies indicated that self-aggregated clusters were formed on a freshly cleaved HOPG surface, while a self-organized monolayer was formed on the precathodized HOPG electrode. The CPMVA film exhibited reversible redox kinetics both in acidic aqueous and in acetone solution, which showed that it could be used as a catalyst even in organic phase. The CPMVA film remained stable even at pH > 7.0, and the pH dependence of the film was much smaller than that of its inorganic film (H4AsMo11VO40) in aqueous solution. The CPMVA film showed strong electrocatalysis on the reduction of bromate, and the catalytic currents were proportional to the square of the concentration of bromate. The new kind of polyoxometalate with good stability may have extensive promise in catalysis.