452 resultados para Electrochemical activation
Resumo:
Eastman-AQ 55D was coated onto a carbon fiber microelectrode surface, and the resulting modified electrodes exhibited high stability. Substantial improvement in the stability was observed as a result of good adhesion and the strong binding of large hydrophobic cations of Eastman AQ 55D. The electrode reaction of meldola blue bound in the polymer film showed a reversible, one-electron transfer process. The effects of solution pH and influence of supporting electrolyte on the modified carbon fiber microelectrode are discussed. The diffusion coefficient of meldola blue in the AQ polymer film determined by chronoamperometry is 2.3 x 10(-18) cm(2) s(-1), and the heterogeneous rate constant of meldola blue at the AQ polymer film/electrode determined by normal pulse voltammetry is 3.97 x 10(-3) cms(-1).
Resumo:
A new viologen derivative of N-(n-octyl)-N'-(10-mercaptodecyl)-4,4'-bipyridinium dibromide has been prepared and characterized by elemental analysis, IR, H-1 NMR, MS and TG-DTA. X-Ray photoelectron spectroscopy, cyclic voltammetry and chronoamperometry have been used to characterize the monolayers formed by this compound on the bulk gold electrodes by self-assembly.
Resumo:
The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.
Resumo:
A systematic study has been made for the electrochemical oxidation reaction of biliverdin (BV) in pure dimethylformamide (DMF) and in DMF - H2O mixed solvent by in situ time resolved spectroelectrochemical and cyclic voltametric techniques. The experiments show that not only the oxidation of BV is promoted, the reaction mechanism is also changed from a ECEC to a ECCECC process by the introduction of water into DMF.
Resumo:
An electrochemical pretreatment regime for a cylindrical carbon fibre microelectrode was optimized for the determination of aminopyrine (AM) and its metabolite 4-aminoantipyrine (AAN) by capillary electrophoresis (CE)-electrochemical detection (ED). Under optimized conditions, a response of high sensitivity and stability was obtained for AM and AAN at a detection voltage as low as 0.9 V following CE-ED, by which AM and AAN were separated satisfactorily. The calibration graph was linear over three orders of magnitude and the limits of detection for AM and AAN were in the femtomole range.
Resumo:
The electrochemical reduction behavior of bilirubin (BR) at platinum electrode in DMF was investigated by cyclic voltammetry, in situ electron spin resonance spectroscopy and in situ rapid scanning thin layer spectroelectrochemistry. Experimental results revealed that the reduction of BR firstly undergoes an ECE process: GRAPHICS The generated (BR)(2)(3-). can be re-oxidized to BR and then to purpurin (Pu) by a series of oxidation processes: GRAPHICS However, the re-reduction reactions of Pu are not the reverse processes. The different reduction mechanisms are discussed in detail.
Resumo:
An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.
Resumo:
Prussian blue has been formed by cyclic voltammetry onto the basal pyrolytic graphite surface to prepare a chemically modified electrode which provides excellent electrocatalysis for both oxidation and reduction of hydrogen peroxide. It is found for the first time that glucose oxidase or D-amino oxidase can be incorporated into a Prussian blue film during its electrochemical growth process. Two amperometric biosensors were fabricated by electrochemical codeposition, and the resulting sensors were protected by coverage with a thin film of Nafion. The influence of various experimental conditions was examined for optimum analytical performance. The glucose sensor responds rapidly to substrates with a detection limit of 2 x 10(-6) M and a linear concentration range of 0.01-3 mM. There was no interference from 2 mM ascorbic acid or uric acid. Another (D-amino acid) sensor gave a detection limit of 3 x 10(-5) M D-alanine, injected with a linear concentration range of 7.0 x 10(-5)-1.4 x 10(-2) M. Glucose and D-amino acid sensors remain relatively stable for 20 and 15 days, respectively. There is no obvious interference from anion electroactive species due to a low operating potential and excellent permselectivity of Nafion.
Resumo:
An integrated CaF2 crystal optically transparent infrared (ir) thin-layer cell was designed and constructed without using any soluble adhesive materials. It is suitable for both aqueous and nonaqueous systems, and can be used not only in ir but also in uv-vis studies. Excellent electrochemical and spectroelectrochemical responses were obtained in evaluating this cell by cyclic voltammetry and steady-state potential step measurements for both ir and uv-vis spectrolectrochemistry with ferri/ferrocyanide in aqueous solution, and with ferrocene/ferrocenium in organic solvent as the testing species, respectively. The newly designed ir cell was applied to investigate the electrochemical reduction process of bilirubin in situ, which provided direct information for identifying the structure of the reduction product and proposing the reaction mechanism.
Resumo:
A series of new catalysts, K-14[Ln(As2W17O61)(2)]. xH(2)O (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy, Tm and Yb) which can electrocatalyze reduction of nitrite are presented and their electrochemical behavior is described in this paper. Bis(2:17-arsenotungstate) lanthanates which are monovacant Dawson derivatives, exhibit two 2-electron and one 1-electron waves, attributed to electron addition and removal from the tungsten-oxide framework that comprises each anion structure. The formal potentials of redox couples are dependent on solution pH. Double-hump principle of formal potentials takes effect with increasing atomic number of lanthanide elements following their special electronic shell structure. The third waves of all the heteropolyanions have good electrocatalytic activities for nitrite reduction at pH 5.0.
Resumo:
Polypyrrole (PPy) film was synthesized by anodic polymerization of pyrrole onto the surface of platinum electrode in the solution of sodium p-toluene sulfonate (NaTsO). When this film was oxidized anodically in an aqueous solution of adenosine triphosphatle (ATP), the ATP anions were incorporated into the film. Release of ATP From the film could be accomplished by reduction of the film in aqueous electrolyte solution. The total amount of ATP released from the film was determined by UV spectroscopic method.
Resumo:
The promoter effect of halogen anions for heterogeneous electron transfer between cytochrome c and a gold electrode was studied. It was found that the order of the promoter ability of halogen anions is I- > Br- > Cl- > F-. In addition, factors which can affect the promoter effect were discussed.
Resumo:
The electrochemical transfer behaviour of vanadium-containing heteropolytungstate anions [PW12-xVxO40]((3+r)-) (x = 1-4) across the water \nitrobenzene interface has been investigated by cyclic voltammetry and chronopotentiometry with cyclic linear current scanning. The transfer of PW11V1O404-, HPW10V2O404-, H2PW10V2O403-, H3PW9V3O403- and H4PW8V4O(40)(3-) across the water \nitrobenzene interface can be observed within the potential window. The effects were observed of pH in the water phase on the transfer behaviour and the formation of vanadium-containing heteropolytungstate anions in solution. Heteropolytungstate anions become more stable due to their involving the vanadium atom. The degree of protonation and the dissociation constant of the trivalent vanadium-containing heteropolytungstate anion of protonation increase with increasing vanadium content. The transfer processes are diffusion-controlled The standard transfer potential, the standard Gibbs energy and the dissociation constant for vanadium-containing heteropolytungstate anions have been obtained and the transfer mechanisms are discussed.
Resumo:
The electrochemical behaviours of three kinds of soluble polyimides were investigated for the first time. It was observed that the cyclic voltammograms(CVS) of these polyimides in nonaqueous solutions are obviously different from that of the poly-imide films casted on surfaces of glass carbon electrode(GCEs) in aqueous solutions.
Resumo:
The transfer of bis-1:11 molybdosilicate heteropolyanion with dysprosium across the water/nitrobenzene interface has been investigated by chronopotentiometry with linear current scanning and cyclic voltammetry. The strandard transfer potential and Gibbs energy estimated from cyclic voltammetry were 0.102V and -39.5kJ.mol(-1), respectively. The kinetic parameters of the transfer were determinated by chronopotentiometry with the linear current scanning.