520 resultados para Egg-shell catalysts
Resumo:
Large, monodisperse core-shell Au-Ag nanoparticles with Ag-like optical properties have been prepared by the seeding growth method in micellar media.
Resumo:
The synthesis and characterization of metallocene complexes which can be used as catalysts in the presence of MAO for olefin polymerization were discussed in the present paper. The metallocene complexes have been characterized by IR, H-1 NMR, EI-MS spectra and element analyses; The catalytic features of Olefin polymerization were studied under different conditions. Metallocenes in which metals is Ti had no activity for ethylene polymerization, Polymers with different features can be obtained by using different catalysts.
Resumo:
The partial oxidation of methane with molecular oxygen was performed on Fe-Mo/SiO2 catalysts. Iron was loaded on the Mo/SiO2 catalyst by chemical vapor deposition of Fe-3(CO)(12). The catalyst showed good low-temperature activities at 723-823 K. Formaldehyde was a major condensable liquid product on the prepared catalyst. There were synergistic effects between iron and molybdenum in Fe-Mo/SiO2 catalysts for the production of formaldehyde from the methane partial oxidation. The activation energy of Mo/SiO2 decreased with the addition of iron and approached that of the Fe/SiO2. The concentration of isolated molybdenum species (the peak at 1148 K in TPR experiments) decreased as the ion concentration increased and had a linear relationship with the selectivity of methane to formaldehyde. The role of Fe and Mo in the Fe-Mo/SiO2 catalyst was proposed: Fe is the center for the C-H activation to generate reaction intermediates, and Mo is the one for the transformation of intermediates into formaldehyde. Those phenomena were predominant below 775 K.
Resumo:
Rabies virus was used as the antigen to immunize laying chickens. Anti-rabies virus immunoglobulin Y(IgY) was isolated from yolks of the eggs laid by these chickens using a two-step salt precipitation and one-step gel filtration protocol. The purified IgY was reduced with dithiothreitol, and heavy chains (HC) and light chains (LC) were obtained. In addition, the purified IgY was digested with pepsin and the fragment with specific antigen binding properties (Fab) was produced. Using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS), the average molecular weights of IgY, HC, LC, and Fab were determined as 167 250, 65 105, 18 660, and 45,359 Da, respectively. IgY has two structural differences compared with mammalian IgGs. First, the molecular weight of the heavy chain of IgY is larger than that of its mammalian counterpart, while the molecular weight of the light chain of IgY is smaller. Second, upon pepsin digestion, anti-rabies virus IgY is degraded into Feb, in contrast to mammalian IgG, which has been reported to be degraded into F(ab')(2) under the same conditions. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
It was first found that Ind(2)Y(mu -Et)(2)AlEt2 and Ind(2)LnN(i-Pr)(2) (Ln = Y, Yb) exhibit extremely high catalytic activity in the polymerization of methyl methacrylate. The reactions can be carried out over a quite broad range of polymerization temperatures from -30 to 50 degreesC. PMMA with high molecular weight (7.8 x 10(-5)) and high isotacticity (94%) can be obtained by using Ind(2)Y(mu -Et)(2)AlEt2, and narrow molecular weight distribution (M-w/M-n < 1.5) can be obtained by using Ind(2)LnN(i-Pr)(2) (Ln = Y, Yb).
Resumo:
Ind(2)Y(mu -Et)(2)AlEt2 and Ind(2)LnN(i-Pr)(2) (Ln = Y, Yb) were used as a single-component catalyst for the polymerization of acrylonitrile (AN) respectively. The regularity of polymerization of AN and stereoregularity of polyacrylonitrile (PAN) were also studied in both cases. Both catalysts can produce PAN with molecular weight from 10,000 to 30,000. In addition, the catalytic activity and molecular weights were increased by the addition of PhONa.
Resumo:
The efficient cleavage of plasmid DNA ( pCAT) by binuclear lanthanide complexes was investigated. At 37 degrees C and neutral pH, both Ho23+L and Er23+L promoted 100% conversion of supercoiled plasmid to the nicked circular form and linear form in 1 h. The corresponding saturation kinetics curve of cleavage of pCAT plasmid by binuclear lanthanide complexes showed the expected increase with catalyst concentration. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A novel polymer-supported metallocene catalyst with crosslinked poly(styrene-co-acrylamide) (PSAm) as the support has been prepared and characterized. The probability of long sequences of acrylamide (Am) in PSAm is still low even at an Am amount of 32.8 mol %, implying the relatively homogeneous distribution of Am. The infrared spectra of PSAm and the supported catalyst substantiate that an amide group in PSAm coordinates with methylaluminoxane through both oxygen and nitrogen atoms. Ethylene/alpha-octene copolymerization showed that the catalytic activity is not markedly affected by adding alpha-octene. C-13 NMR analysis of the ethylene/alpha-octene copolymer indicated that the composition distribution of the copolymer is uniform. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The ceria modified Pt/CeO2/Al2O3 and Pt/Al2O3 catalysts were studied in the partial oxidation of methane to syngas. The SEM, XRD, TPR and TPD techniques were used for the catalyst characterization. The addition of ceria could enhance the Pt dispersion and decrease the Pt crystallise size; the activity and selectivity of catalyst for partial oxidation were improved significantly, and the methane total oxidation was suppressed sharply. The ceria effect was also discussed in a detailed way.
Resumo:
Catalysts consisting of heteropoly acids (HPAs) supported on different silica and mesoporous molecular sieves have been prepared by impregnation and the sol-gel method, respectively, and their catalytic behavior in fixed-bed alkylation of isobutane with butene has been investigated. The activity, selectivity and stability of the supported-HPA catalysts could be correlated with the surface acidity of the catalysts, the structure of supports as well as the time on stream (TOS). In the fixed-bed reactor, the acidity of the heteropoly acid is favorable to the formation of dimerization products (C-8(=)); especially, the pore size of supports was seen to have an important effect on activity and product distribution of the catalysts. Contrary to the traditional solid-acid catalysts, the supported-HPA catalysts own an excellent stability for alkylation, which makes it possible for these supported catalysts to replace the liquid-acid catalysts used in industry.
Resumo:
The toughening effect of the shell content of a core-shell latex polymer poly(butyl acrylate) (PBA)-cs-poly(methyl methacrylate) (PMMA) on its blends with polycarbonate (PC) was studied. The changes of mechanical properties, morphology, and compatibility of the blends of PC/PBA-cs-PMMA with the change of the shell thickness of PBA-cs-PMMA were investigated. It is interesting to notice that mechanical properties of the blends are very sensitive to the shell thickness (i.e., shell content), and that there is a possibility to adjust the impact and tensile properties of the blend by selecting a PBA-cs-PMMA with a proper core/shell ratio. Hence, a modified PC material with balanced mechanical properties may be prepared.
Resumo:
The toughening effect of the content of a core-shell poly(butyl acrylate)/poly(methyl methacrylate) latex polymer (PBA-cs-PMMA) on the mechanical properties, morphology and compatibility of its blends with polycarbonate(PC), i.e., PC/PBA-cs-PMMa, was studied. The mechanical properties of the blends are strongly affected by varying the content of PBA-cs-PMMA in the blend. When the PBA-cs-PMMA content is only 5 wt.-%, the impact strength of PC/PBA-cs-PMMA is almost 19 times as high as that of pure PC, indicating that PBA-cs-PMMA is a very good impact modifier for PC. With increasing interphacial layer thickness and decreasing interphacial tension, the interphacial activity becomes more and more effective and, at the same time, miscibility increases too.
Resumo:
The polymerization of butadiene(Bd), isoprene(Ip) and styrene(St) has been examined using the six catalyst systems composed of lanthanocene, (C5H9Cp)(2)NdCl(I), (C5H9Cp)(2)SmCl(II), (MeCp)(2)SmOAr'(III), (Ind)(2)NdCl(IV), Me2Si(Ind)(2)NdCl(V) and (Flu)(2)NdCl(VI), and methylaluminoxane(MAO) respectively. All of them can be used to form the polyisoprene with molecular weights of 1 to 10 thousand and cis-1,4-unit contents of 41 to 47%. (I), (II) and (III) of them can be also used to form the polybutadiene with molecular weights of 10 to 20 thousand and cis-1,4-unit contents of 62 to 78%. In addition, the catalysts from (II) to (V) are still active for St polymerization and (II) of them gives a syndio -rich random polystyrene. It is noteworthy that (II) and (III) are active for homopolymerization of Bd, Ip and St in the same polymerization condition.
Resumo:
The mixed oxides, including YBa2Cu3O7, LaBa2Cu3O7, LaBaCu2O5, La2BaCu3O7, La4BaCu5O12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, TPD and TPR method. It was found that they were the active catalysts for the NO decomposition and NO reduction by CO. The existance of Cu3+ is an important factor to give the catalysts a high activity for the NO reduction by CO.