424 resultados para Cluster ions
Resumo:
The change of Eu3+-surroundings with the Al/B ratio varying from 4.5 to 2 and Eu/(Al + B) = 0.02, was investigated through X-ray diffraction, infrared spectra, excitation and emission spectra, and phonon sideband. The results show coexistence of the crystal phase Al18B4O33 and the amorphous phase and Eu3+ ions of the samples with the Al/B ratio from 3 to 2 are incorporated into the amorphous phase. It was also found that electron-phonon coupling strength decreases with the Al/B ratio from 3 to 2, non-radiative decay rate decreases, resulting in an increase of the Eu3+-emission intensity. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Studies on the bounding character of rare earth ions with borine serum albumin(BSA) are significant for understanding the state of rare earth ions in body and their effects on the structure and function of protein. The fluorescence spectrum and pH potentiometry showed consistent results of apparent complexion constant of Tb-2 . BSA. The equilibrium dialysis showed that there are two specific binding sites and more than six non-specific binding sites of RE ions onto BSA molecule with the conditional stable constants lg K-1 = 5. 157 and lgK(2) = 3. 435. Na-23 NMR studies revealed that the BSA peptide chain bound to RE ions was expanded and the mobility of its molecular backbone was increased.
Resumo:
The investigations of classification on the valence changes from RE3+ to RE2+ (RE = Eu, Sm, Yb, Tm) in host compounds of alkaline earth berate were performed using artificial neural networks (ANNs). For comparison, the common methods of pattern recognition, such as SIMCA, KNN, Fisher discriminant analysis and stepwise discriminant analysis were adopted. A learning set consisting of 24 host compounds and a test set consisting of 12 host compounds were characterized by eight crystal structure parameters. These parameters were reduced from 8 to 4 by leaps and bounds algorithm. The recognition rates from 87.5 to 95.8% and prediction capabilities from 75.0 to 91.7% were obtained. The results provided by ANN method were better than that achieved by the other four methods. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The ion-molecule reactions in acetone were investigated which were induced under the chemical ionization. The structural information of the reaction products were obtained by using collision-induced dissociation (CID) technique performed at ion kinetic energies of 30eV.
Resumo:
To obtain high efficiency luminescent materials, the system Al2O3-B2O3 containing Ce3+ and Tb3+ ions with variation of B2O3-content, has been prepared by Al2O3, H3BO3, CeO2 and Tb4O7 under reducing atmosphere at 1250(j)ae. It is notable that the brightness of the sample with appropriate composition is similar to that of commercial phosphorous containing Ce3+ and Tb3+, indicating that a new high efficency green luminescent material was obtained with appropriate B2O3-content.
Resumo:
The structure of phenylalanine transfer ribonucleic acid (tRNA(Phe)) in solution was explored by H-1 NMR spectroscopy to evaluate the effect of lanthanide ion on the structural and conformational change. It was found that La3+ ions possess specific effects on the imino proton region of the H-1 NMR spectra for yeast tRNA(Phe). The dependence of the imino proton spectra of yeast tRNA(Phe) as a function of La3+ concentration was examined, and the results suggest that the tertiary base pair G(15). C-48, which is located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by La3+ (shifted to downfield by as much as 0.35). Base pair U-8. A(14) in yeast tRNA(Phe), which are stacked on G(15). C-48, was also affected by added La3+ when 1 similar to 2 Mg2+ were also present. Another imino proton that may be affected by La3+ in yeast tRNA(Phe) is that of the tertiary base pair G(19). C-56. The assignment of this resonance in yeast tRNA(Phe) is tentative since it is located in the region of highly overlapping resonances beween 12.6 and 12.2. This base pair helps to anchor the D-loop to the T Psi C loop. The binding of La3+ caused conformational change of tRNA, which is responsible for shifts to upfield or downfield in H-1 NMR spectra.
Resumo:
By using the dielectric description theory of ionicity of solids, chemical bond properties of rare earth ions with various ligands are studied. Calculated results show that chemical bond properties of the same rare earth ion and the same ligand in different crystals depend on the crystal structures. In a series of compounds, chemical bond properties of crystals containing different rare earth ions are similar. The magnitude of covalency of chemical bonds of trivalent rare earth ions and various ligands has an order like F
Resumo:
The dependence of the differential capacitance of polypyrrole doped with several typical dopants on potential is presented, which shows that the differential capacitance varies with the potential, the doped polypyrroles with electroactive ions give the largest capacitance near their formal potentials, which is attributed to the mutual media for electron transfer between polypyrrole and electroactive dopants. The existence of two conducting phases was observed in the complex capacitance plots. The electroactive anions act as an intra-conducting-phase medium for electron transfer, the electroactive cations act as an inter-conducting-phase medium for electron transfer. The mutual media between polypyrrole and redox dopants lead to the increase of the discharging time.
Resumo:
C-2 and LaC2+ were studied using Hartree-Fock(HF), B3LYP (Becke 3-paremeter-Lee-Yang-Parr) density functional method, second-order Moller-Plesset perturbation (MP2) and coupled cluster singles and doubles with non-iterative triples(CCSD(T)) methods. The basis set employed was LANL1DZ. Geometries, vibrational frequencies and other quantities were reported. The results showed that for C-2, all the methods performed well for low spin state (singlet), while only HF and B3LYP remained so for high spin state (triplet). For LaC2+, four isomers were presented and fully optimized. The results suggested that linear isomers with C-infinity v and D-infinity h symmetries were predicted to be saddle points on the energy surface for all the methods, while for isomers with C-2 upsilon and C-s symmetries, they were local minima except C-2 upsilon at B3LYP level, and were isoenergetic at HF, MP2 and CCSD(T) levels, near isoenergetic at B3LYP level. From the differences between HOMO and LUMO, it is also known that the isomers with C-2 upsilon and C-s symmetries offer the largest values and therefore correspond to the most stable structure. For La-C bond lengths, B3LYP gives the shortest, the order is B3LYP
Resumo:
The effect of lanthanum ions on the structural and conformational change of yeast tRNA(Phe) was studied by H-1 NMR. The results suggest that the tertiary base pair (G-15)(C-48), which was located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by adding La3+ and shifted 0.33 downfield. Based pair (U-8)(A-14), which is associated with a tertiary interaction, links the base of the acceptor stem to the D-stem and anchors the elbow of the L structure, shifted 0.20 upfield. Another imino proton that may be affected by La3+ in tRNA(Phe) is the tertiary base pair (G-19)(C-56). The assignment of this resonance is tentative since it is located in the region of highly overlapping resonances between 12.6 and 12.2. This base pair helps to anchor the D-loop to the T psi C loop.
Resumo:
Photophysical properties (e.g. luminescence and energy transfer) of binary and ternary complexes of Gd3+, Eu3+, and Tb3+ with aminobenzoic acids and 1,10-phenanthroline were studied in connection with their spectroscopic characterization. Intramolecular energy transfer between center ions and ligands as well as between ligands is discussed in detail.
Resumo:
Cleavage of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), adenosine-3'-monophosphate (3'-AMP) and guanosine-3'-monophosphate (3'-GMP) by lanthanides was investigated by NMR and the method of measuring the liberated phosphates. Rapid cleavage of both 5'-mononucleotides and 3'-mononucleotides by Ce-III and Ce-IV under air at pH 9 and 37 degrees C was observed. Other lanthanides showed less efficiency for hydrolyzing 5'-mononucleotides but 3'-mononucleotides were catalyzed by a range of lanthanide ions. The mechanism for hydrolyzing 3'-mononucleotides by lanthanides was:investigated. The notable difference in reactivity between Ce-III and the other lanthanide ions under air was further studied showing that the cleavage is enhanced with increasing molar fraction of Ce-IV. The fast cleavage of mononucleotides by Ce-III under air at pH 9 is ascribed to the resultant Ce-IV in the reaction mixture. (C) 1997 Elsevier Science Ltd.
Resumo:
The luminescence properties of Ce3+, Gd3+, and Tb3+ have been investigated in the compound CaAl2B2O7. The single excitation band peaking at about 320 nm and single emission band peaking at about 384 nm for Ce3+, without the characteristic doublet, are attributed to the extensive crystal-field splitting of 4f ground state. The emission of Gd3+ consists of well-known sharp lines and two weak bands around 319.5 and 325 nm. These bands are due to the coupling of Gd3+ with BO33- groups. The green emission of Tb3+ is considerably sensitized by Ce3+. Energy transfer from Ce3+ to Tb3+ in CaAl2B2O7 is efficient. (C) 1997 Elsevier Science Ltd.
Resumo:
With Mass Analyzed Ion Kinetic Energy Spectrometry (MIKES), Collisional Induced Dissociation(CID), and Electron Capture Induced Decomposition(ECID) technigues, the doubly charged ions and singly charged ions from o(-), m(-), and p(-) diol benzene in the EI source have been studied. In terms of the values of the kinetic energy releases(T) of the charge separation reactions of the doubly charged ions and the estimated intercharge distances(R) of the exploding doubly charged ions the transition structures were proposed. Some structural information about the transition states was also obtained. It is of interest that the MIKES/CID spectra of singly charged ions [C6H6O2](+) from the three isomers are of significant differences.