372 resultados para spin polarization
Resumo:
The angular momentum polarization and rotational state distributions of the H-2 and HCl products from the H + HCl reaction are calculated at a relative translational energy of 1.6 eV by using quasiclassical trajectories on two potential energy surfaces, one from G3 surface [T.C. Allison et al., J. Phys. Chem. 100 (1996) 13575], and the other from BW2 surface [W. Bian, H.-J. Werner, J. Chem. Phys. 112 (2000) 220]. Product rotational distributions obtained on the G3 potential energy surface (PES) are much closer to the experimental results (P.M. Aker et al., J. Chem. Phys. 90 (1989) 4795; J. Chem. Phys. 90 (1989) 4809) than the distributions calculated on the BW2 PES. The distributions of P(phi(r)) for the H-2 and HCl products obtained on the G3 PES are similar, whereas the rotational alignment effect of the H-2 product is stronger than that of the HCl product. In contrast to the polarization distributions obtained on the G3 PES, the rotational alignment effect of the two products calculated on the BW2 PES is similar. However, the abstraction reaction is dominated by out-of-plane mechanisms, while the exchange reaction is dominated by in-plane mechanisms. The significant difference of the product rotational polarization obtained on the G3 and BW2 PESs implies that the studies of the dynamical stereochemistry can provide a sensitive test for the accuracy of the PES. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We demonstrate a strikingly novel morphology of high-density polyethylene (HDPE) crystal obtained upon melt crystallization of spin-coated thin film. This crystal gives windmill-like morphology which contains a number of petals. A detailed inspection on this morphology reveals that each petal is actually composed of terrace-stacked PE lamellae, in which the polymer chains within crystallographic a-c planes adopt similar to 45 degrees tilting around b-axis. The surrounding domains associated with a petal of the windmill composed of twisted lamellar overgrowths with an identical orientation of their long axis, which is the crystallographic b-axis shared by the petal and its corresponding twisted lamellar overgrowths.
Resumo:
The structural changes of genomic DNA upon interaction with small molecules have been studied in real time using dual-polarization interferometry (DPI). Native or thermally denatured DNA was immobilized on the silicon oxynitride surface via a preadsorbed poly(ethylenimine) (PEI) layer. The mass loading was similar for both types of DNA, however, native DNA formed a looser and thicker layer due to its rigidity, unlike the more flexible denatured DNA, which mixed with PEI to form a denser and thinner layer. Ethidium bromide (EtBr), a classical intercalator, induced the large thickness decrease and density increase of native DNA (double-stranded), but a slight increase in both the thickness and density of denatured DNA (partial single-stranded).
Resumo:
Polystyrenc film of about 50 nm in thickness on silicon wafer was obtained by spin-coating in tetrahydrofuran solution.The film exhibits a rough surface as shown by atomic force microscopy images and ellipsometry data.
Resumo:
A mononuclear tri-spin single-molecule magnet based on the rare earth radical [Tb(hfac)(3)(NITPhOEt)(2)] (NITPhOEt = 4'-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) has been synthesized, structurally characterized and the alternating current signals show a slow relaxation of magnetization and frequency-dependent signals.
Resumo:
A new iron(III) coordination compound exhibiting a two-step spin-transition behavior with a remarkably wide [HS-LS] plateau of about 45 K has been synthesized from a hydrazino Schiff-base ligand with an N,N,O donor set, namely 2-methoxy-6-(pyridine-2-ylhydrazonomethyl) phenol (Hmph). The single-crystal X-ray structure of the coordination compound {[Fe(mph)(2)](ClO4)(MeOH)(0.5)(H2O)(0.5)}(2) (1) determined at 150 K reveals the presence of two slightly different iron(III) centers in pseudo-octahedral environments generated by two deprotonated tridentate mph ligands. The presence of hydrogen bonding interactions, instigated by the well-designed ligand, may justify the occurrence of the abrupt transitions. 1 has been characterized by temperature-dependent magnetic susceptibility measurements, EPR spectroscopy, differential scanning calorimetry, and Fe-51 Mossbauer spectroscopy, which all confirm the occurrence of a two-step transition. In addition, the iron(III) species in the high-spin state has been trapped and characterized by rapid cooling EPR studies.
Resumo:
In this paper, the authors have systematically studied the microphase separation and crystallization during spin coating of an ABC triblock copolymer, polystyrene-b-poly(2-vinylpyridine)-b-poly(ethylene oxide) (PS-b-P2VP-b-PEO). The microphase separation of PS-b-P2VP-b-PEO and the crystallization of PEO blocks can be modulated by the types of the solvent and the substrate, the spinning speed, and the copolymer concentration. Ordered microphase-separated pattern, where PEO and P2VP blocks adsorbed to the substrate and PS blocks protrusions formed hexagonal dots above the P2VP domains, can only be obtained when PS-b-P2VP-b-PEO is dissolved in N,N-dimethylformamide and the films are spin coated onto the polar substrate, silicon wafers or mica. The mechanism of the formation of regular pattern by microphase separation is found to be mainly related to the inducement of the substrate (middle block P2VP wetting the polar substrate), the quick vanishment of the solvent during the early stage of the spin coating, and the slow evaporation of the remaining solvent during the subsequent stage. On the other hand, the probability of the crystallization of PEO blocks during spin coating decreases with the reduced film thickness. When the film thickness reaches a certain value (3.0 nm), the extensive crystallization of PEO is effectively prohibited and ordered microphase-separated pattern over large areas can be routinely prepared.
Resumo:
An organic light-emitting diode fabricated by doping a europium, complex tris(dibiphenoylmethane)-mono (phenanthroline)-europium (Eu(DBPM)(3) (Phen)) into polymer poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene) and poly(N-carbazole) was realized by spin coating. Comparison with other europium complexes, due to the existence of a larger spectral overlap between Eu(DBPM)(3)(Phen) and poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4phenylene), a high efficiency red emission was achieved. The device showed a turn-on voltage of 5.2 V The maximum efficiency reached 0.47 cd/A at luminance of 50 cd/m(2). The maximum luminance can reach 150 cd/m(2) at 95 mA/cm(2). To the best of our knowledge, this is one of the best results based on europium complexes by spin-casting method.
Resumo:
Polymer concentration and shear and stretch field effects on the surface morphology evolution of three different kinds of polymers (polystyrene (PS), polybutadiene (PB) and polystyrene-b-polybutadiene-b-polystyrene (SBS)) during the spin-coating were investigated by means of atomic force microscopy (AFM). For PS and SBS, continuous film, net-like structure and particle structure were observed at different concentrations. For PB, net-like structures were not observed and continuous films and radial array of droplets emerged. Moreover, we compared surface morphology transitions on different substrate locations from the center to the edge. For PS, net-like structure, broken net-like structure and irregular array of particles were observed. For SBS, net-like structure, periodically orientated string-like structure and broken-line structure appeared. But for PB, flower-like holes in the continuous film, distorted stream-like structure and irregular distributions of droplets emerged. These different transitions of surface morphologies were discussed in terms of individual material property.