728 resultados para GaN Buffer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the growth of hexagonal ZnO nanorods and nanoflowers on GaN-based LED epiwafer using a solution deposition method. We also discuss the mechanisms of epitaxial nucleation and of the growth of ZnO nanorods and nanoflowers. A GaN-based LED epiwafer was first deposited on a sapphire substrate by MOCVD with no electrode being fabricated on it. Vertically aligned ZnO nanorods with an average height of similar to 2.4 mu m were then grown on the LED epiwafer, and nanoflowers were synthesized on the nanorods. The growth orientation of the nanorods was perpendicular to the surface, and the synthesized nanoflowers were composed of nanorods. The micro-Raman spectra of the ZnO nanorods and nanoflowers are similar and both exhibit the E-2 (high) mode and the second-order multiple-phonon mode. The photoluminescence spectrum of ZnO nanostructures exhibits ultraviolet emission centred at about 380 nm and a broad and enhanced green emission centred at about 526 nm. The green emission of the ZnO nanostructures combined with the emission of InGaN quantum wells provides a valuable method to improve the colour rendering index (CRI) of LEDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlGaN/AlN/GaN high electron mobility transistor (HEMT) structures with high mobility GaN channel layer were grown on 50 min diameter semi-insulating (SI) 6H-SiC substrates by metalorganic chemical vapor deposition and large periphery HEMT devices were fabricated and characterized. High two-dimensional electron gas mobility of 2215 cm(2)/V s at room temperature with sheet electron concentration of 1.044 x 10(13)/cm(2) was achieved. The 50 mm diameter HEMT wafer exhibited a low average sheet resistance of 251.0 Omega/square, with the resistance uniformity of 2.02%. Atomic force microscopy measurements revealed a smooth AlGaN surface with a root-mean-square roughness of 0.27 nm for a scan area of 5 mu mi x 5 pm. The 1-mm gate width devices fabricated using the materials demonstrated a very high continuous wave output power of 9.39 W at 8 GHz, with a power added efficiency of 46.2% and power gain of 7.54 dB. A maximum drain current density of 1300 mA/mm, an extrinsic transconductance of 382 mS/mm, a current gain cutoff frequency of 31 GHz and a maximum frequency of oscillation 60 GHz were also achieved in the same devices. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm(2)/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5 mu m x 5 mu m are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 Omega/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/mm and a maximum drain current density of 800 mA/mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Properties of the Ag/Ni/p-GaN structure at different temperatures are studied by Auger electron spectroscopy, scanning electron microscopy and high resolution x-ray diffraction. The effect of Ag in ohmic contact on the crystalline quality is investigated and the optimized value of annealing temperature is reported. The lowest specific contact resistance of 2.5 x 10(-4) Omega cm(2) is obtained at annealing temperature of 550 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a new structure of GaN based Schottky barrier ultraviolet photodetector, in which a thin n-type AlGaN window layer is added on the conventional n(-)-GaN/n(+)-GaN device structure. The performance of the Schottky barrier ultraviolet photodetector is found to be improved by the new structure. The simulation result shows that the new structure can reduce the negative effect of surface states on the performance of Schottky barrier GaN photodetectors, improving the quantum efficiency and decreasing the dark current. The investigations suggest that the new photodetector can exhibit a better responsivity by choosing a suitably high carrier concentration and thin thickness for the AlGaN window layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of an external electric field on the electronic structure of GaN nanowires, as well as GaAs nanowires for comparison, are investigated theoretically. It is found that there is an anti-crossing effect in GaN nanowires caused by a small electric field, the hole energy levels, hole wave functions, and optical oscillator strengths change dramatically when the radius (R) is around a critical radius (R-c), while this effect is absent in GaAs nanowires. When R is slightly smaller than R-c, the highest hole states are optically dark in the absence of the electric field, and a small electric field can change them to be optically bright, due to the coupling of hole states brought by the field. The Rashba spin-orbit effect is also studied. The electron Rashba coefficient alpha increases linearly with the electric field. While the hole Rashba coefficients beta do not increase linearly, but have complicated relationships with the electric field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 275 mu m thick GaN layer was directly grown on the SiO2-prepatterned sapphire in a home-built vertical hydride vapour phase epitaxy (HVPE) reactor. The variation of optical and structure characteristics were microscopically identified using spatially resolved cathodeluminescence and micro-Raman spectroscopy in a cross section of the thick film. The D X-0(A) line with the FWHM of 5.1 meV and etch- pit density of 9 x 10(6) cm(-2) illustrated high crystalline quality of the thick GaN epitaxial layer. Optically active regions appeared above the SiO2 masks and disappeared abruptly due to the tapered inversion domains at 210 - 230 mu m thickness. The crystalline quality was improved by increasing the thickness of the GaN/sapphire interface, but the region with a distance of 2 mu m from the top surface revealed relatively low quality due to degenerate surface reconstruction by residual gas reaction. The x-ray rocking curve for the symmetric (0 0 2) and asymmetric (1 0 2) reflections also showed good quality and a small wing tilt of the epitaxial lateral overgrowth (ELO) GaN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN epitaxy films were grown on (0001) oriented sapphire substrate by metal-organic vapor deposition(MOCVD). AFM and SEM were used to analyze the surface morphology of GaN films. Hardness and critical load of GaN films were measured by an nano-indentation tester, friction coefficient by reciprocating UMT-2MT tribometer. It is found that the surface of GaN film is smooth and the epitaxial growth mechanism is in two-dimension mode, GaN epitaxy films also belong to ultra-hardness materials, whose hardness is 22.1 MPa and elastic modulus is 299.5 GPa. Adhesion strength of epitaxial GaN to sapphire is high, and critical load reaches 1.6 N. Friction coefficient against GCr15 ball is steadily close to 0.13, while GaN films turns to be broken rapidly by using Si3N4 ceramic ball as counterpart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the growth of AlGaN epilayers on a sapphire substrate by metalorganic chemical vapour deposition using various low-temperature ( LT) AlN buffer thicknesses. Combined scanning electron microscopy and cathodoluminescence investigations reveal the correlation between the surface morphology and optical properties of AlGaN films in a microscopic scale. It is found that the suitable thickness of the LT AlN buffer for high quality AlGaN growth is around 20 nm. The Al compositional inhomogeneity of the AlGaN epilayer is attributed to the low lateral mobility of Al adatoms on the growing surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase transition between thermodynamically stable hexagonal wurtzite (h-WZ) gallium nitride (GaN) and metastable cubic zinc-blende (c-ZB) GaN during growth by radio-frequency planar magnetron sputtering is studied. GaN films grown on substrates with lower mismatches tend to have a h-WZ structure, but when grown on substrates with higher mismatches, a c-ZB structure is preferred. GaN films grown under high nitrogen pressure also tend to have a h-WZ structure, whereas a c-ZB structure is preferred when grown under low nitrogen pressure. In addition, low target-power growth not only helps to improve hexagonal GaN (h-GaN) crystalline quality at high nitrogen pressure on low-mismatch substrates, but also enhances cubic GaN (c-GaN) quality at low nitrogen pressure on high-mismatch substrates. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We extend the use of Raman spectroscopy to investigate the modes of Er-implanted and Er + O co-implanted GaN, and discuss the influence of O ions on Er3+ -related infrared photoluminescence (PL). It is found that Er3+ implantation introduces new Raman peaks in Raman spectra at frequencies 300 and 670 cm and one additional new peak at 360cm is introduced after Er + O implantation. It is proposed that the broad structure around 300 cm(-1) mode originates from disorder-activated scattering (DARS). The Raman peak at 670 cm is assigned to nitrogen vacancy related defects. The 360 cm peak is attributed to the O implantation induced defect complexes (vacancies, interstitial, or anti-sites in the host). The appearance of the 360 cm(-1) mode results in the decrease of the Er3+ -related infrared PL of GaN: Er + O.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AlGaN/GaN high electron mobility transistors (HEMTs) on 6H-SiC with varying field-plate length and gate-drain spacing were fabricated and analyzed. The classical small signal FET model and the well-known ColdFET method were used to extract the small signal parameters of the devices. Though the devices with field plates exhibited lower better f(T) characteristic, they did demonstrate better f(max), MSG and power density performances than the conventional devices without field plate. Besides, no independence of DC characteristic on field-plate length was observed. With the increase of the field-plate length and the gate-drain spacing, the characteristic of f(T) and f(max), degraded due to the large parasitic effects. Loadpull method was used to measure the microwave power performance of the devices. Under the condition of continuous wave at 5.4 GHz, an output power density of 4.69 W/mm was obtained for device with field-plate length of 0.5 mu m and gate-drain length of 2 mu m. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of Si and Mg doping on the crystalline quality and In distribution in the InGaN films were studied by atomic force microscope (AFM), triple crystal X-ray diffraction (TCXRD) and Rutherford backscattering spectrometry (RBS). The undoped, Si-doped and Mg-doped InGaN films were grown by metalorganic chemical vapor deposition (MOCVD) on (0 0 0 1) sapphire substrates. The electronic concentration in the Si-doped InGaN is about 2 x 10(19) cm(-3). It is found that the crystalline quality and In distribution in InGaN is slightly affected by the Si doping. In the Mg doped-case, the hole concentration is about 4 x 10(18) cm(-3) after annealing treatment. The surface morphology and crystalline quality of the Mg-doped InGaN are deteriorated significantly compared with the undoped InGaN. The growth rate of Mg-doped InGaN is higher than the undoped InGaN. Mg doping enhances the In incorporation in the InGaN alloy. The increase in In composition in the growth direction is more severe than the undoped InGaN. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new way to meet the amount of strain relaxation in an InGaN quantum well layer grown on relaxed GaN by calculating and measuring its internal field. With perturbation theory, we also calculate the transition energy of InGaN/GaN SQWs as affected by internal fields. The newly reported experimental data by Graham et al. fit our calculations well on the assumption that the InGaN well layer suffered a 20% strain relaxation, we discuss the differences between our calculated results and the experimental data. Our calculation suggests that with the increase of indium mole fraction in the InGaN/GaN quantum well, the effect of polarization fields on the luminescence of the quantum well will increase. Moreover, our calculation also suggests that an increase in the quantum well width by only one monolayer can result in a large reduction in the transition energy. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In undoped high-resistivity GaN epilayers grown by metalorganic chemical vapor deposition (MOCVD) on sapphire, deep levels are investigated by persistent photoconductivity (PPC) and optical quenching (OQ) of photoconductivity (PC) measurements. The PPC and OQ are studied by exciting the samples with two beams of radiation of various wavelengths and intensities. When the light wavelengths of 300 and 340 nm radiate the GaN epilayer, the photocurrent without any quenching effect is rapidly increased because the band gap transition only occurs. If the background light is 340 nm and the quenching light is 564 or 828 nm, the quenching of a small photocurrent generates but clearly. Two broad quenching bands that extend from 385 to 716 nm and from 723 to 1000 nm with a maximum at approximately 2.2 eV (566 nm) is observed. These quenching bands are attributed to hole trap level's existence in the GaN epilayer. We point out that the origin of the defects responsible for the optical quenching can be attributed to nitrogen antisite and/or gallium vacancy. (c) 2006 Elsevier B.V. All rights reserved.