355 resultados para AC IMPEDANCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To extend the cross-hole seismic 2D data to outside 3D seismic data, reconstructing the low frequency data to high frequency data is necessary. Blind deconvolution method is a key technology. In this paper, an implementation of Blind deconvolution is introduced. And optimized precondition conjugate gradient method is used to improve the stability of the algorithm and reduce the computation. Then high-frequency retrieved Seismic data and the cross-hole seismic data is combined for constraint inversion. Real data processing proved the method is effective. To solve the problem that the seismic data resolution can’t meet the request of reservoir prediction in the river face thin-layers in Chinese eastern oil fields, a high frequency data reconstruction method is proposed. The extrema of the seismic data are used to get the modulation function which operated with the original seismic data to get the high frequency part of the reconstruction data to rebuild the wide band data. This method greatly saves the computation, and easy to adjust the parameters. In the output profile, the original features of the seismic events are kept, the common feint that breaking the events and adding new zeros to produce alias is avoided. And the interbeded details are enhanced compared to the original profiles. The effective band of seismic data is expended and the method is approved by the processing of the field data. Aim to the problem in the exploration and development of Chinese eastern oil field that the high frequency log data and the relative low frequency seismic data can’t be merged, a workflow of log data extrapolation constrained by time-phase model based on local wave decomposition is raised. The seismic instantaneous phase is resolved by local wave decomposition to build time-phase model, the layers beside the well is matched to build the relation of log and seismic data, multiple log info is extrapolated constrained by seismic equiphase map, high precision attributes inverse sections are produced. In the course of resolve the instantaneous phase, a new method of local wave decomposition --Hilbert transform mean mode decomposition(HMMD) is raised to improve the computation speed and noise immunity. The method is applied in the high resolution reservoir prediction in Mao2 survey of Daqing oil field, Multiple attributes profiles of wave impedance, gamma-ray, electrical resistivity, sand membership degree are produced, of which the resolution is high and the horizontal continuous is good. It’s proved to be a effective method for reservoir prediction and estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the prediction of complex reservoir with high heterogeneities in lithologic and petrophysical properties, because of inexact data (e.g., information-overlapping, information-incomplete, and noise-contaminated) and ambiguous physical relationship, inversion results suffer from non-uniqueness, instability and uncertainty. Thus, the reservoir prediction technologies based on the linear assumptions are unsuited for these complex areas. Based on the limitations of conventional technologies, the thesis conducts a series of researches on various kernel problems such as inversions from band-limited seismic data, inversion resolution, inversion stability, and ambiguous physical relationship. The thesis combines deterministic, statistical and nonlinear theories of geophysics, and integrates geological information, rock physics, well data and seismic data to predict lithologic and petrophysical parameters. The joint inversion technology is suited for the areas with complex depositional environment and complex rock-physical relationship. Combining nonlinear multistage Robinson seismic convolution model with unconventional Caianiello neural network, the thesis implements the unification of the deterministic and statistical inversion. Through Robinson seismic convolution model and nonlinear self-affine transform, the deterministic inversion is implemented by establishing a deterministic relationship between seismic impedance and seismic responses. So, this can ensure inversion reliability. Furthermore, through multistage seismic wavelet (MSW)/seismic inverse wavelet (MSIW) and Caianiello neural network, the statistical inversion is implemented by establishing a statistical relationship between seismic impedance and seismic responses. Thus, this can ensure the anti-noise ability. In this thesis, direct and indirect inversion modes are alternately used to estimate and revise the impedance value. Direct inversion result is used as the initial value of indirect inversion and finally high-resolution impedance profile is achieved by indirect inversion. This largely enhances inversion precision. In the thesis, a nonlinear rock physics convolution model is adopted to establish a relationship between impedance and porosity/clay-content. Through multistage decomposition and bidirectional edge wavelet detection, it can depict more complex rock physical relationship. Moreover, it uses the Caianiello neural network to implement the combination of deterministic inversion, statistical inversion and nonlinear theory. Last, by combined applications of direct inversion based on vertical edge detection wavelet and indirect inversion based on lateral edge detection wavelet, it implements the integrative application of geological information, well data and seismic impedance for estimation of high-resolution petrophysical parameters (porosity/clay-content). These inversion results can be used to reservoir prediction and characterization. Multi-well constrains and separate-frequency inversion modes are adopted in the thesis. The analyses of these sections of lithologic and petrophysical properties show that the low-frequency sections reflect the macro structure of the strata, while the middle/high-frequency sections reflect the detailed structure of the strata. Therefore, the high-resolution sections can be used to recognize the boundary of sand body and to predict the hydrocarbon zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary approaches for people to understand the inner properties of the earth and the distribution of the mineral resources are mainly coming from surface geology survey and geophysical/geochemical data inversion and interpretation. The purpose of seismic inversion is to extract information of the subsurface stratum geometrical structures and the distribution of material properties from seismic wave which is used for resource prospecting, exploitation and the study for inner structure of the earth and its dynamic process. Although the study of seismic parameter inversion has achieved a lot since 1950s, some problems are still persisting when applying in real data due to their nonlinearity and ill-posedness. Most inversion methods we use to invert geophysical parameters are based on iterative inversion which depends largely on the initial model and constraint conditions. It would be difficult to obtain a believable result when taking into consideration different factors such as environmental and equipment noise that exist in seismic wave excitation, propagation and acquisition. The seismic inversion based on real data is a typical nonlinear problem, which means most of their objective functions are multi-minimum. It makes them formidable to be solved using commonly used methods such as general-linearization and quasi-linearization inversion because of local convergence. Global nonlinear search methods which do not rely heavily on the initial model seem more promising, but the amount of computation required for real data process is unacceptable. In order to solve those problems mentioned above, this paper addresses a kind of global nonlinear inversion method which brings Quantum Monte Carlo (QMC) method into geophysical inverse problems. QMC has been used as an effective numerical method to study quantum many-body system which is often governed by Schrödinger equation. This method can be categorized into zero temperature method and finite temperature method. This paper is subdivided into four parts. In the first one, we briefly review the theory of QMC method and find out the connections with geophysical nonlinear inversion, and then give the flow chart of the algorithm. In the second part, we apply four QMC inverse methods in 1D wave equation impedance inversion and generally compare their results with convergence rate and accuracy. The feasibility, stability, and anti-noise capacity of the algorithms are also discussed within this chapter. Numerical results demonstrate that it is possible to solve geophysical nonlinear inversion and other nonlinear optimization problems by means of QMC method. They are also showing that Green’s function Monte Carlo (GFMC) and diffusion Monte Carlo (DMC) are more applicable than Path Integral Monte Carlo (PIMC) and Variational Monte Carlo (VMC) in real data. The third part provides the parallel version of serial QMC algorithms which are applied in a 2D acoustic velocity inversion and real seismic data processing and further discusses these algorithms’ globality and anti-noise capacity. The inverted results show the robustness of these algorithms which make them feasible to be used in 2D inversion and real data processing. The parallel inversion algorithms in this chapter are also applicable in other optimization. Finally, some useful conclusions are obtained in the last section. The analysis and comparison of the results indicate that it is successful to bring QMC into geophysical inversion. QMC is a kind of nonlinear inversion method which guarantees stability, efficiency and anti-noise. The most appealing property is that it does not rely heavily on the initial model and can be suited to nonlinear and multi-minimum geophysical inverse problems. This method can also be used in other filed regarding nonlinear optimization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In research field of oil geophysical prospecting, reservoir prediction is refers to forecasting physical properties of petroleum reservoir by using data of seismic and well logging, it is a research which can guide oil field development. Singularities of seismic and logging data are caused by the heterogeneity of reservoir physical property. It's one of important methods that using singularity characteristics of seismic and logging data to study the reservoir physical property in recently. Among them, realization of reservoir quantitative prediction by analyzing singularity of the data and enhancing transition description of data is difficulty in method research. Based on wavelet transform and the fractal theory, the paper studied the singularity judgment criterion for seismic and logging data, not only analyzed quantitative relation between singularity data and reservoir physical property, but also applied it in practical reservoir prediction. The main achievements are: 1. A new method which provides singular points and their strength information estimation at only one single scale is proposed by Herrmann (1999). Based on that, the dissertation proposed modified algorithm which realized singularity polarity detection. 2. The dissertation introduced onset function to generalize the traditional geologic boundaries variations model which used singularity characteristics to represent the abruptness of the lithologic velocity transition. We show that singularity analysis reveals generic singularity information conducted from velocity or acoustic impedance to seismogram based on the convolution seismic-model theory. Theory and applications indicated that singularity information calculated from seismic data was a natural attribute for delineating stratigraphy boundaries due to its excellent ability in detecting detailed geologic features. We demonstrated that singularity analysis was a powerful tool to delineate stratigraphy boundaries and inverse acoustic impedance and velocity. 3. The geologic significances of logging data singularity information were also presented. According to our analysis, the positions of singularities indicate the sequence stratigraphic boundary, and there is subtle relationship between the singularity strength and sedimentary environment, meanwhile the singularity polarity used to recognize stratigraphic base-level cycle. Based on all those above, a new method which provided sedimentary cycle analysis based on the singularity information of logging data in multiple scales was proposed in this dissertation. This method provided a quantitative tool for judging interface of stratum sequence and achieved good results in the actual application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reservoir prediction techniques from prestack seismic are among the most important ones for exploration of lithologic hydrocarbon reservoir. In this paper, we set the turbidite fan sandstone reservoir in Liao-Zhong depress as our researching target, and aims to solve the apllication difficulties on pre-stack inversion in the area, where the drilling data is scarce and the reservoir is lateral varied. Meanwhile, AVO analysis and pre-stack inversion for gas-bearing detection is systematically researched. The seismic reflection characters of gas-bearing sandstone in turbidite fan with different fluid content are defined, after analyzing results from AVO seismic simulation and porous fluid replacement of real log data, and under the guides of the seismic characters from classical gas-bearing sandstone reservoir and numerical simulation for complicate gas-bearing sandstone. It is confirmed that detecting gas-bearing sandstone in turbidite fan via AVO technologies is feasible. In terms of AVO analysis, two AVO characters, fluid detection factor and product of intercept and gradient, can effectively identify top and bottom boundaries and lateral range of tuibidite gas sand by comparing real drilling data. Cross-plotting of near and far angle stack data could avoid the correlation existing in P-G analysis. After comparing the acoustic impedance inversions with routine stacked data and AVO intercept, impedance derived from AVO intercept attribute could reduce the acoustic impedance estimating error which is caused by AVO. On the aspect of elastic impedance inversion, the AVO information in the pre-stack gathers is properly reserved by creating partial angle stack data. By the far angle elastic impedance alone, the gas sand, with abnormally low range of values, can be identified from the background rocks. The boundary of gas sand can also be clearly determined by cross-plotting of near and far angle elastic impedances. The accuracy of far angle elastic impedance is very sensitive to the parameter K, and by taking the statistical average of Vp/Vs on the targeted section in key wells, the accuracy of low frequency trends is gurranteed; the intensive absorsion within the area of the gas sand, which tends to push the spectral of seismic data to the lower end, will cause errors on the inversion result of elastic impedance. The solution is to confine the inversion on the interested area by improving the wavelet. On the aspect of prestack AVA simultaneous inversion, the constraint of local rock-physical trends between velocities of P-wave、S-wave and density successfully removes the instability of inversion, thus improves the precision of the resulting elastic parameters. Plenty of data on rock properties are derived via AVO analysis and prestack seismic data inversion. Based on them, the fluid anomaly is analysized and lithological interpretation are conducted. The distribution of gas sand can be consistently determined via various of ways, such as cross-plotting of P and G attributes, near and far partial angle stack data, near and far angle elastic impedances, λρ and Vp/Vs, etc. The shear modulo and density are also reliable enough to be used for lithological interpretation. We successfully applied the AVO analysis and pre-stack inversion techniques to gas detecting for turbidite fan sand reservoir in Liao-Zhong depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Post-stack seismic impedance inversion is the key technology of reservoir prediction and identification. Geophysicists have done a lot of research for the problem, but the developed methods still cannot satisfy practical requirements completely. The results of different inversion methods are different and the results of one method used by different people are different too. The reasons are due to the quality of seismic data, inaccurate wavelet extraction, errors between normal incidence assumption and real situation, and so on. In addition, there are two main influence factors: one is the band-limited property of seismic data; the other is the ill-posed property of impedance inversion. Thus far, the most effective way to solve the band-limited problem is the constrained inversion. And the most effective way to solve ill-posed problems is the regularization method assisted with proper optimization techniques. This thesis systematically introduces the iterative regularization methods and numerical optimization methods for impedance inversion. A regularized restarted conjugate gradient method for solving ill-posed problems in impedance inversion is proposed. Theoretic simulations are made and field data applications are performed. It reveals that the proposed algorithm possesses the superiority to conventional conjugate gradient method. Finally, non-smooth optimization is proposed as the further research direction in seismic impedance inversion according to practical situation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the deepening development of oil-gas exploration and the sharp rise in costs, modern seismic techniques had been progressed rapidly. The Seismic Inversion Technique extracts seismic attribute from the seismic reflection data, inverses the underground distribution of wave impedance or speed, estimates reservoir parameters, makes some reservoir prediction and oil reservoir description as a key technology of Seismic exploration, which provides a reliable basic material for oil-gas exploration. Well-driven SI is essentially an seismic-logging joint inversion. The low, high-frequency information comes from the logging information, while the structural characteristics and medium frequency band depend on the seismic data. Inversion results mainly depend on the quality of raw data, the rationality of the process, the relativity of synthetic and seismic data, etc. This paper mainly research on how the log-to-seismic correlation have affected the well-driven seismic inversion precision. Synthetic, the comparison between middle –frequency borehole impedance and relative seismic impedance and well-attribute crossplots have been taken into account the log-to-seismic correlation. The results verify that the better log-to-seismic correlation, the more reliable the seismic inversion result, through the analysis of three real working area (Qikou Sag, Qiongdongnan basin, Sulige gas field).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractured oil and gas reservoir is an important type of oil and gas reservoir, which is taking a growing part of current oil and gas production in the whole world. Thus these technologies targeted at exploration of fractured oil and gas reservoirs are drawing vast attentions. It is difficult to accurately predict the fracture development orientation and intensity in oil and gas exploration. Focused on this problem, this paper systematically conducted series study of seismic data processing and P-wave attributes fracture detection based on the structure of ZX buried mountain, and obtained good results. This paper firstly stimulated the propagation of P-wave in weak anisotropic media caused by vertical aligned cracks, and analyzed the rule of P-wave attributes’ variation associated with observed azimuth, such as travel-time, amplitude and AVO gradient and so on, and quantitatively described the sensitive degree of these attributes to anisotropy of fracture medium. In order to further study the sensitive degree of these attributes to anisotropy of fractures, meanwhile, this paper stimulated P-wave propagation through different types and different intensity anisotropic medium respectively and summarized the rule of these attributes’ variation associated with observed azimuth in different anisotropic medium. The results of these studies provided reliable references for predicting orientation, extensity and size of actual complicated cracked medium by P-wave azimuth attributes responses. In the paper, amounts of seismic data processing methods are used to keep and recover all kinds of attributes applied for fracture detection, which guarantee the high accurate of these attributes, thus then improve the accurate of fracture detection. During seismic data processing, the paper adopted the three dimensional F-Kx-Ky field cone filter technique to attenuate ground roll waves and multiple waves, then enhances the S/N ratio of pre-stack seismic data; comprehensively applying geometrical spread compensation, surface consistent amplitude compensation, residual amplitude compensation to recover amplitude; common azimuth processing method effectively preserves the azimuthal characteristics of P-wave attributes; the technique of bend ray adaptive aperture pre-stack time migration insures to obtain the best image in each azimuth. Application of these processing methods guaranteed these attributes’ accuracy, and then improved the accuracy of fracture detection. After comparing and analyzing a variety of attributes, relative wave impedance (relative amplitude) attribute is selected to inverse the orientation of fracture medium; attenuation gradient and corresponding frequency of 85% energy are selected to inverse the intensity of fracture medium; then obtained the fracture distribution characteristics of lower Paleozoic and Precambrian in ZX ancient buried mountains. The results are good accord with the characteristics of faults system and well information in this area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since C.L. Hearn presented the concept of flow unit in 1984, its generation mechanisms and controlling factors have been studied in many aspects using different methods by researchers. There are some basic methods to do the research, and there are several concepts and classification standards about flow unit. Based on previous achievements and using methodologies from sedimentary geology, geophysics, seismic stratigraphy, and reservoir engineering, the author systemically studies the factors controlling flow unit, puts forward a series of methods for recognition, classification and evaluation of flow unit. The results obtained in this paper have important significance not only for understanding the flow unit, but also for revealing the distribution of remaining oil. As a case, this paper deals with the reservoir rocks in Guantao Group of Gudong Oilfield. Zhanhua Sag, Jiyang Depression in Bohaiwan Basin. Based on the study of stratigraphic, depositional and structural characteristics, the author establishes reservoir geological models, reveals the geological characteristics of oil-bearing reservoir of fluvial facies, points out the factors controlling flow unit and geological parameters for classification of flow unit. and summarizes methods and technologies for flow unit study when geological, well-logging and mathematical methods are used. It is the first attempt in literatures to evaluate reservoir by well-logging data constrained by geological conditions, then a well-logging evaluation model can be built. This kind of model is more precise than ever for calculating physical parameters in flow unit. In a well bore, there are six methods to recognize a flow unit. Among them, the activity function and intra-layer difference methods are the most effective. Along a section, the composition type of flow unit can be located according amplitude and impedance on seismic section. Slice method and other methods are used to distinguish flow unit. In order to reveal the distribution laws of flow unit in space, the author create a new method, named combination and composition of flow unit. Based on microscopic pore structure research, the classification methods of flow unit are developed. There are three types of flow unit in the reservoir of fluvial facies. They have their own lithology, petrophysics and pore structure character. Using judgement method, standard functions are built to determine the class of flow unit of fluvial facies. Combining reservoir engineering methods, the distribution laws of remaining oil in different types, or in different part of a flow unit are studied. It is evident that the remaining oil is controlled by the type of flow unit. The author reveals the relationship between flow unit and remaining oil distribution, builds the flowing models, predicts the variation of reservoir parameters in space, put forward different methods developing remaining oil in different flow unit. Especially, based on the results obtained in this paper, some suggestions for the adjustment of the developing flow units have been applied in Districts No.4 and No.7, and good results have been yielded. So, the results of this paper can guide oil field development. They are useful and significant for developing the remaining oil and enhancing the oil recovery efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modeling formula based on seismic wavelet can well simulate zero - phase wavelet and hybrid-phase wavelet, and approximate maximal - phase and minimal - phase wavelet in a certain sense. The modeling wavelet can be used as wavelet function after suitable modification item added to meet some conditions. On the basis of the modified Morlet wavelet, the derivative wavelet function has been derived. As a basic wavelet, it can be sued for high resolution frequency - division processing and instantaneous feature extraction, in acoordance with the signal expanding characters in time and scale domains by each wavelet structured. Finally, an application example proves the effectiveness and reasonability of the method. Based on the analysis of SVD (Singular Value Decomposition) filter, by taking wavelet as basic wavelet and combining SVD filter and wavelet transform, a new de - noising method, which is Based on multi - dimension and multi-space de - noising method, is proposed. The implementation of this method is discussed the detail. Theoretical analysis and modeling show that the method has strong capacity of de - noising and keeping attributes of effective wave. It is a good tool for de - noising when the S/N ratio is poor. To give prominence to high frequency information of reflection event of important layer and to take account of other frequency information under processing seismic data, it is difficult for deconvolution filter to realize this goal. A filter from Fourier Transform has some problems for realizing the goal. In this paper, a new method is put forward, that is a method of processing seismic data in frequency division from wavelet transform and reconstruction. In ordinary seismic processing methods for resolution improvement, deconvolution operator has poor part characteristics, thus influencing the operator frequency. In wavelet transform, wavelet function has very good part characteristics. Frequency - division data processing in wavelet transform also brings quite good high resolution data, but it needs more time than deconvolution method does. On the basis of frequency - division processing method in wavelet domain, a new technique is put forward, which involves 1) designing filter operators equivalent to deconvolution operator in time and frequency domains in wavelet transform, 2) obtaining derivative wavelet function that is suitable to high - resolution seismic data processing, and 3) processing high resolution seismic data by deconvolution method in time domain. In the method of producing some instantaneous characteristic signals by using Hilbert transform, Hilbert transform is very sensitive to high - frequency random noise. As a result, even though there exist weak high - frequency noises in seismic signals, the obtained instantaneous characteristics of seismic signals may be still submerged by the noises. One method for having instantaneous characteristics of seismic signals in wavelet domain is put forward, which obtains directly the instantaneous characteristics of seismic signals by taking the characteristics of both the real part (real signals, namely seismic signals) and the imaginary part (the Hilbert transfom of real signals) of wavelet transform. The method has the functions of frequency division and noise removal. What is more, the weak wave whose frequency is lower than that of high - frequency random noise is retained in the obtained instantaneous characteristics of seismic signals, and the weak wave may be seen in instantaneous characteristic sections (such as instantaneous frequency, instantaneous phase and instantaneous amplitude). Impedance inversion is one of tools in the description of oil reservoir. one of methods in impedance inversion is Generalized Linear Inversion. This method has higher precision of inversion. But, this method is sensitive to noise of seismic data, so that error results are got. The description of oil reservoir in researching important geological layer, in order to give prominence to geological characteristics of the important layer, not only high frequency impedance to research thin sand layer, but other frequency impedance are needed. It is difficult for some impedance inversion method to realize the goal. Wavelet transform is very good in denoising and processing in frequency division. Therefore, in the paper, a method of impedance inversion is put forward based on wavelet transform, that is impedance inversion in frequency division from wavelet transform and reconstruction. in this paper, based on wavelet transform, methods of time - frequency analysis is given. Fanally, methods above are in application on real oil field - Sansan oil field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impedance inversion is very important in seismic technology. It is based on seismic profile. Good inversion result is derived from high quality seismic profile, which is formed using high resolution imaging resolution. High-resolution process demands that signal/noise ratio is high. It is very important for seismic inversion to improve signal/noise ratio. the main idea is that the physical parameter (wave impedance), which describes the stratigraphy directly, is achieved from seismic data expressing structural style indirectly. The solution of impedance inversion technology, which is based on convolution model, is arbitrary. It is a good way to apply the priori information as the restricted condition in inversion. An updated impedance inversion technology is presented which overcome the flaw of traditional model and highlight the influence of structure. Considering impedance inversion restricted by sedimentary model, layer filling style and congruence relation, the impedance model is built. So the impedance inversion restricted by geological rule could be realized. there are some innovations in this dissertation: 1. The best migration aperture is achieved from the included angle of time surface of diffracted wave and reflected wave. Restricted by structural model, the dip of time surface of reflected wave and diffracted wave is given. 2. The conventional method of FXY forcasting noise is updated, and the signal/noise ratio is improved. 3. Considering the characteristic of probability distribution of seismic data and geological events fully, an object function is constructed using the theory of Bayes estimation as the criterion. The mathematics is used here to describe the content of practice theory. 4. Considering the influence of structure, the seismic profile is interpreted to build the model of structure. A series of structure model is built. So as the impedance model. The high frequency of inversion is controlled by the geological rule. 5. Conjugate gradient method is selected to improve resolving process for it fit the demands of geophysics, and the efficiency of algorithm is enhanced. As the geological information is used fully, the result of impedance inversion is reasonable and complex reservoir could be forecasted further perfectly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the exploration of fractured reservoirs, worldwide difficult problems will be encountered: how to locate the fractured zones, how to quantitatively determine the azimuth, density, and distribution of the fractures, and how to compute the permeability and porosity of the fractures. In an endeavor to solve these problems, the fractured shale reservoir in SiKou area of ShengLi oil field was chosen as a study area. A study of seismic predictive theory and methods for solving problems encountered in fractured reservoir exploration are examined herein. Building on widely used current fractured reservoir exploration techniques, new seismic theories and methods focusing on wave propagation principles in anisotropic medium are proposed. Additionally, integrated new seismic data acquisition and processing methods are proposed. Based on research and application of RVA and WA methods from earlier research, a new method of acoustic impedance varying with azimuth (IPVA) creatively is put forth. Lastly combining drilling data, well log data, and geologic data, an integrated seismic predictive method for cracked reservoir bed was formed. A summary of the six parts of research work of this paper is outlined below. In part one, conventional geologic and geophysical prediction methods etc. for cracked reservoir exploration are examined, and the weaknesses of these approaches discussed. In part two, seismic wave propagation principles in cracked reservoirs are studied. The wave equation of seismic velocity and attenuation factor in three kinds of fracture mediums is induced, and the azimuth anisotropy of velocity and attenuation in fracture mediums is determined. In part three, building on the research and application of AVA and WA methods by a former researcher, a new method of acoustic impedance creatively varying with azimuth (IPVA) is introduced. A practical software package utilizing this technique is also introduced. In part four, Base on previously discussed theory, first a large full azimuth 3d seismic data (70km~2) was designed and acquired. Next, the volume was processed with conventional processing sequence. Then AVA, WA, and IPVA processing was applied, and finally the azimuth and density of the fractures were quantitatively determined by an integrated method. Predictions were supported by well data that indicate the approach is highly reliable. in part five, geological conditions contributing to cracked reservoir bed formation are analyzed in the LuoJia area resulting in the discovery that the main fractured zones are related to fault distribution in the basin, that also control the accumulation of the oil and gas, the generation mechanisms and types of fractured shale reservoirs are studied. Lastly, by using full 3D seismic attributes, azimuth and density of cracked reservoir zones are successfully quantitative predicted. Using an integrated approach that incorporates seismic, geologic and well log data, the best two fractured oil prospects in LouJia area are proposed. These results herein represent a break through in seismic technology, integrated seismic predictive theory, and production technology for fractured reservoirs. The approach fills a void that can be applied both inside China, and internationally. Importantly, this technique opens a new exploration play in the ShengLi oil field that while difficult has substantial potential. Properly applied, this approach could play an important role toward stabilizing the oil field' production. In addition, this technique could be extended fracture exploration in other oil fields producing substantial economic reward.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seismic survey is the most effective geophysical method during exploration and development of oil/gas. As a main means in processing and interpreting seismic data, impedance inversion takes up a special position in seismic survey. This is because the impedance parameter is a ligament which connects seismic data with well-logging and geological information, while it is also essential in predicting reservoir properties and sand-body. In fact, the result of traditional impedance inversion is not ideal. This is because the mathematical inverse problem of impedance is poor-pose so that the inverse result has instability and multi-result, so it is necessary to introduce regularization. Most simple regularizations are presented in existent literature, there is a premise that the image(or model) is globally smooth. In fact, as an actual geological model, it not only has made of smooth region but also be separated by the obvious edge, the edge is very important attribute of geological model. It's difficult to preserve these characteristics of the model and to avoid an edge too smooth to clear. Thereby, in this paper, we propose a impedance inverse method controlled by hyperparameters with edge-preserving regularization, the inverse convergence speed and result would be improved. In order to preserve the edge, the potential function of regularization should satisfy nine conditions such as basic assumptions edge preservation and convergence assumptions etc. Eventually, a model with clear background and edge-abnormity can be acquired. The several potential functions and the corresponding weight functions are presented in this paper. The potential functionφLφHL andφGM can meet the need of inverse precision by calculating the models. For the local constant planar and quadric models, we respectively present the neighborhood system of Markov random field corresponding to the regularization term. We linearity nonlinear regularization by using half-quadratic regularization, it not only preserve the edge, and but also simplify the inversion, and can use some linear methods. We introduced two regularization parameters (or hyperparameters) λ2 and δ in the regularization term. λ2 is used to balance the influence between the data term and the transcendental term; δ is a calibrating parameter used to adjust the gradient value at the discontinuous position(or formation interface). Meanwhile, in the inverse procedure, it is important to select the initial value of hyperparameters and to change hyperparameters, these will then have influence on convergence speed and inverse effect. In this paper, we roughly give the initial value of hyperparameters by using a trend- curve of φ-(λ2, δ) and by a method of calculating the upper limit value of hyperparameters. At one time, we change hyperparameters by using a certain coefficient or Maximum Likelihood method, this can be simultaneously fulfilled with the inverse procedure. Actually, we used the Fast Simulated Annealing algorithm in the inverse procedure. This method overcame restrictions from the local extremum without depending on the initial value, and got a global optimal result. Meanwhile, we expound in detail the convergence condition of FSA, the metropolis receiving probability form Metropolis-Hasting, the thermal procession based on the Gibbs sample and other methods integrated with FSA. These content can help us to understand and improve FSA. Through calculating in the theoretic model and applying it to the field data, it is proved that the impedance inverse method in this paper has the advantage of high precision practicability and obvious effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Butovskaya, a scholar of Former Soviet Union, first determined the depth of basalt layer in Tashkent Zone by using converted waves on seismogram in 1952. From then on, more and more scholars developed the comprehensive research that imaged the earth interior structures by applying converted waves information. With the digitalization of earthquake observation, The inversion imaging of complete or partial waveform record can efficiently improve inversion quality and widen its usage scope, therefore great progress is made in converted wave imaging. This paper makes a certain study in converted wave imaging on that basis. Transmitted PP waves and converted PS waves are generated when a P-wave propagates through an interface separating two media with large impedance contracts. A PS converted wave is a seismic body wave, which result from the conversion of an incident parent P wave at a boundary within the crust to a refracted S wave. The thickness of a single crustal layer can theoretically be determined by observing, with three-componented seismometer at a single station, the difference in time of the arrival of the parent P wave and the arrival of the PS converted wave. For a multilayered media, PS converted wave arrivals corresponding to each of the layers can theoretically be observed, provided the station is sufficiently from the source of the parent P wave to allow initial penetration of the P wave beneath the deepest layer considered. To avoid the difficulty of picking up transmitted P-wave and converted wave phases, this paper proposed a converted wave migration method by estimating the travel time difference between PS converted wave and PP transmitted wave. To verify its validity, we apply the converted wave PS migration algorithm to synthetic data generated by three forward modeling. The migration results indicate that PS converted wave may be migrated to reconstruct the transmitting interface. This technique is helpful to investigate the deep earth structures by using earthquake data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reflectivity sequences extraction is a key part of impedance inversion in seismic exploration. Although many valid inversion methods exist, with crosswell seismic data, the frequency brand of seismic data can not be broadened to satisfy the practical need. It is an urgent problem to be solved. Pre-stack depth migration which developed in these years becomes more and more robust in the exploration. It is a powerful technology of imaging to the geological object with complex structure and its final result is reflectivity imaging. Based on the reflectivity imaging of crosswell seismic data and wave equation, this paper completed such works as follows: Completes the workflow of blind deconvolution, Cauchy criteria is used to regulate the inversion(sparse inversion). Also the precondition conjugate gradient(PCG) based on Krylov subspace is combined with to decrease the computation, improves the speed, and the transition matrix is not necessary anymore be positive and symmetric. This method is used to the high frequency recovery of crosswell seismic section and the result is satisfactory. Application of rotation transform and viterbi algorithm in the preprocess of equation prestack depth migration. In equation prestack depth migration, the grid of seismic dataset is required to be regular. Due to the influence of complex terrain and fold, the acquisition geometry sometimes becomes irregular. At the same time, to avoid the aliasing produced by the sparse sample along the on-line, interpolation should be done between tracks. In this paper, I use the rotation transform to make on-line run parallel with the coordinate, and also use the viterbi algorithm to complete the automatic picking of events, the result is satisfactory. 1. Imaging is a key part of pre-stack depth migration besides extrapolation. Imaging condition can influence the final result of reflectivity sequences imaging greatly however accurate the extrapolation operator is. The author does migration of Marmousi under different imaging conditions. And analyzes these methods according to the results. The results of computation show that imaging condition which stabilize source wave field and the least-squares estimation imaging condition in this paper are better than the conventional correlation imaging condition. The traditional pattern of "distributed computing and mass decision" is wisely adopted in the field of seismic data processing and becoming an obstacle of the promoting of the enterprise management level. Thus at the end of this paper, a systemic solution scheme, which employs the mode of "distributed computing - centralized storage - instant release", is brought forward, based on the combination of C/S and B/S release models. The architecture of the solution, the corresponding web technology and the client software are introduced. The application shows that the validity of this scheme.