538 resultados para catalytic membrane
Resumo:
Extraction and separation of Eu3+ and Zn2+ in sulfuric acid solution was investigated by hollow fiber membrane with cyanex 302 (bis (2,4,4-trimethylpentyl) monothiophosphinic acid) in counter-currently circulating operation. Reaction mechanism of membrane extraction and effect of extractant concentration and H+ concentration in aqueous phase on the mass transfer coefficient were discussed. It can be concluded that Zn2+ can be extracted completely from Eu3+ sulfate solution according to the kinetics competing difference. In one extractor process, extraction percentage of Zn2+ was not completely and Eu3+ was not extracted. Extraction percentage of Zn2+ reached 94.92%, but Eu3+ only reached 8.59% after 100 minutes extraction in two series connectors and that of Zn2+ and Eu3+ reached 99.9% and 6.53% respectively after 40 minutes extraction in three series connectors.
Resumo:
Ferricyanide anion has usually been used as a marker of ion-channel sensors. In this work we first found that ferricyanide, itself, can act as a stimulus to regulate the permeability of sBLM prepared from didodecyldimethylammonium bromide (a kind of synthetic lipid) on a GC electrode. We used cyclic voltammetry and a.c. impedance to investigate this phenomenon. The interaction between sBLM and ferricyanide concerns time. Furthermore, we developed a sensor for ferricyanide anion. The ion-channel sensor is highly sensitive. It can detect ferricyanide concentration as low as 5 muM.
Resumo:
A ferrocene-dimyristoyl phosphatidylcholine (DMPC) film electrode was prepared by casting the solution of ferrocene and DMPC in chloroform onto a glassy carbon electrode surface. Ferrocene retained in the biological membrane gave a couple of irreversible peaks of cyclic voltammogram. The electrode exhibited good electrocatalytic activity for the oxidation of ascorbic acid (H(2)A) in phosphate buffer (pH 6.64) with an anodic peak potential of +340 mV (vs. Ag/AgCl). The anodic current was directly proportional to the square root of the scan rate below 150 mV s(-1). The influence of the pH value was investigated and it was observed that pH 6.64 was the suitable value to the anodic peak potential and current. The thickness of the film and the interference of uric acid were also studied. The electrode can be used to determine H(2)A in the presence of equimolar uric acid. The catalytic peak current increased linearly with the concentration of H(2)A in the range of 1 X 10(-4)-5 X 10(-3) mol L-1.
Resumo:
A stable lipid cast film was made by casting a lipid in chloroform onto a glassy carbon electrode. We imbedded a new mediator norepinephrine into this lipid cast film, which was considered as a biological membrane model. Through electro catalytic oxidation of ascorbic acid by this system, the anodic overpotential was reduced by about 250 mV compared with that obtained at a bare glassy carbon electrode. The electrochemical behavior of norepinephrine in the cast film was controlled by diffusion. The obtained diffusion coefficient of ascorbic acid was 1.87 x 10(-5) cm 2 s(-1). The catalytic current increased linearly with the concentration of ascorbic acid in the range from 0.5 to 10 mM. Using cyclic voltammetry, we obtained two peaks for ascorbic acid and uric acid in the same solution. The separation between the two peaks is about 147 mV. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The catalytic behavior of concentrated heteropolyacid solution in acylation. of anisole with acetic anhydride has been investigated under the reaction conditions such as molar ratio of anisole to acetic anhydride, reaction temperature and mass ratio of reactant to catalyst. When the molar ratio of anisole to acetic anhydride is changed from 2:1 to 1:1, the yield of methoxyacetophenone (MOAP) increases a little, but when it is changed from 1: 1 to 1: 2, the yield has a greater increase from 15% to 30%. The yield of MOAP at the reaction temperature of 363 K doubles that at 333 K. The highest yield is obtained when the mass ratio of reactant to catalyst is 12.8. The conclusion is therefore that the heteropolyacid in acetic acid can effectively catalyze the acylation of anisole with acetic anhydride, and its activity and selectivity are comparable to those of acid clay and molecular sieve.
Resumo:
In order to generate catalytic antibodies with glutathione peroxidase (GPx) activity, we prepared GSH-S-DNP butyl ester and GSH-S-DNP benzyl ester as the haptens. Two ScFvs that bound specifically to the haptens were selected from the human phage-displayed antibody library. The two ScFv genes were highly homologous, consisting of 786 bps and belonging to the same VH family-DP25. In the premise of maintaining the amino acid sequence, mutated plasmids were constructed by use of the mutated primers in PCR, and they were over-expressed in E. coli. After the active site serine was converted into selenocysteine with the chemical modifying method, we obtained two human catalytic antibodies with GPx activity of 72.2U/mu mol and 28.8U/mu mol, respectively. With the aid of computer mimicking, it can be assumed that the antibodies can form dimers and the mutated selenocysteine residue is located in the binding site. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody with the higher activity was studied. (C) 2001 Elsevier Science BY. All rights reserved.
Resumo:
A highly alternative copolymer of carbon dioxide and propylene oxide was obtained using a lanthanide trichloroacetates-based ternary catalyst. The rare-earth compound in the ternary catalyst was critical to dramatically raise the yield and molecular weight of the copolymer in addition to maintaining a high alternating ratio of the copolymer. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Conversion of thyroxine (T-4) to 3,5,3'-triiodothyronine is an essential first step in controlling thyroid hormone action. Type I deiodinase (DI) can catalyze the conversion to produce the bulk of serum 3,5,3'-triiodothyronine. Acting as a mimic of DI, a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against T4 into selenocysteines, can catalyze the deiodination of T4 with dithiothreitol (DTT) as cosubstrate. The mimic enzyme Se-4C5 exhibited a much greater deiodinase activity than model compound ebselen and another selenium-containing antibody Se-Hp4 against GSH. The coupling of selenocysteine with the combining pocket of antibody 4C5 endowed Se-4C5 with enzymatic activity. To probe the catalytic mechanism of the catalytic antibody, detailed kinetic studies were carried out in this paper. Investigations into the deiodinative reaction revealed the relationship between the initial velocity and substrate concentration. The characteristic parallel Dalziel plots demonstrated that Se-4C5-catalyzed reaction mechanism was ping-pong one, involving at least one covalent enzyme intermediate. The kinetic properties of the catalytic antibody were similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 muM, respectively, and a V-m value of 270 pmol per mg of protein per min. The activity could be sensitively inhibited by 6-propyl-2-thiouracil (PTU) with a K-i value of similar to 120 muM at 2.0 muM T-4 concentration. The PTU inhibition was progressively alleviated with the increasing concentration of added DTT, revealing that PTU was a competitive inhibitor for DTT.
Resumo:
Sodium sulfonate-functionalized polyether ether ketone)s derived from Bisphenol A with a degree of sulfonation up to 2.0 were synthesized by aromatic nucleophilic polycondensation of various amounts of 5,5-carbonylbis(2-fluorobenzenesulfonate) (1), 4,4'-diflurobenzophenone (2) and Bisphenol A (2). Copolymers showed excellent thermal stability and good mechanical properties. The selectivity of water vapor over nitrogen of membranes prepared from copolymers 3a and 3h was determined to be 3.43 x 10(6) and 1.05 x 10(7), respectively.
Resumo:
Acting as a mimic of type I deiodinase (DI), a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against thyroxine (T-4) into selenocysteines, can catalyze the deiodination of T-4 to 3,5,3'-triiodothyronine (T-3) with dithiothreitol (DTT) as cosubstrate. Investigations into the deiodinative reaction by Se-4C5 revealed the relationship between the initial velocity and substrate concentration was subjected to Michaelis-Menten equation and the reaction mechanism was ping-pong one. The kinetic properties of the catalytic antibody were a little similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 mM, respectively, and V-m value of 270 pmol per mg protein per min. The activity could be sensitively inhibited by PTU with a K-i value of approximately 120 muM at 2.0 muM of T-4 concentration, revealing that PTU was a competitive inhibitor for DTT, (C) 2001 Academic Press.
Resumo:
A method was developed for the determination of lanthanum in the cytoplasm of human erythrocytes after they were incubated in lanthanum nitrate or citrate solutions. The lanthanum concentration in the cytoplasm of incubated erythrocytes is much higher than that in normal erythrocytes. It is suggested lanthanum can transport through the membrane of erythrocyte in vitro. Solutions containing chelator are unsuitable to be washing buffer in the investigation.
Resumo:
A novel type of potassium sensor based on the capacitance change of valinomycin-incorporated bilayer supported on a gold electrode has been developed and characterized. The lipid membrane was Formed by painted method and monitored simultaneously by capacitance variation. The capacitance of the electrode-supported membrane was found to be modulated by different concentrations of K+. Investigating the capacitance change allows a simple and specific technique for the measurement of potassium ion in solution. Especially, the homemade capacitance meter is, to our knowledge, used to monitor the bilayer membrane formation and detect K+ for the first time. It has been proved that this capacitance measurement is a very useful technique because it is simple and sensitive compared to the other methods.
Resumo:
Two series of mixed oxides, CoAlM and MgAlM (M = Cr, Mn, Fe, Co, Ni, Cu), were prepared by calcining their corresponding hydrotalcite-like compounds (HTLc). The ratio of Mg: Al: M (or Co: Al: hi) was 3:1:1. The catalytic activity of all samples for the reaction of NO + CO was investigated. The results showed that the activity of CoAlM was much higher than that of MgAlM. The structure and the property of redox were characterized by XRD and H-2-TPR. The results indicated that only MgO phase was observed after calcining MgAlM hydrotalcites, and the transition metals became more stable. The spinel-like phase appeared in all of CoAlM samples after the calcination, and the transition metals were changed to be more active, and easily reduced. The activities of three series of mixed oxides CoAlCu obtained from different preparation methods, different ratio of Co:Al: Cu and at different calcination temperatures, were studied in detail for proposing the mechanism of reaction. The ability of adsorption of NO and CO were investigated respectively for supporting the mechanism.
Resumo:
Stable lipid film was made by casting lipid in chloroform onto a glassy carbon electrode. This model of a biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by dopamine. After this electrode had been immersed in dopamine solution for 10 h, it was found that some dopamine had been incorporated in the film. The cyclic voltammogram was obtained for the oxidation of 2.0 X 10(-3) mol 1(-1) NADH with dopamine incorporated in the films. All electrochemical experiments were performed in 0.005 mol 1(-1) phosphate buffer (pH 7.0) containing 0.1 mol 1(-1) NaCl without oxygen. The oxidation current increased gradually with successive sweeps and reached steady state. It was a different phenomenon from previous results. The anodic overpotential was reduced by about 130 mV compared with that obtained at a bare glassy carbon electrode. The diffusion coefficient for 2.0 X 10(-3) mol 1(-1) NADH was 6.7 X 10(-6) cm(2) s(-1). (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A manganese molybdenum phosphate, (NH3CH2CH2NH3)(10)(H3O)(3)(H5O)Na-2[MnMo12O24(OH)(6) (PO4)(4)(PO3OH)(4)][MnMo12O24 (OH)(6)(PO4)(6)(PO3OH)(2)]. 9H(2)O, has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. The structure of this compound may be considered to be two [Mo6O12(OH)(3)(PO4)(2)(HPO4)(2)](7-) units bonded together by a manganese atom, although several P-O groups are not protonated on account of coordination to a Na+ cation. One-dimensional tunnels were formed in the solid. A probe reaction of the oxidation of acetaldehyde with H2O2 using this compound as catalyst was carried out in a liquid-solid system, showing that the manganese molybdenum phosphate has high catalytic activity in the reaction.