333 resultados para Organic photochemical
Resumo:
A new class of organic-inorganic hybrid porous clay heterostructures (HPCHs) have been prepared through the surfactant-directed assembly of organosilica in the galleries of montmorillonite. The reaction involved hydrolysis and condensation of phenyltriethoxysilane and tetraethoxysilane in the presence of intragallery surfactant templates (dodecylame and cetyltrimethylammonium ion). The surfactant templates were removed from the pores by solvent-extraction. The products were characterized by X-ray diffraction (XRD), N-2 adsorption, solid-state Si-29 and C-13 NMR, and FTIR. XRD patterns indicated a regular interstratification of the clay layers for HPCHs. Depending on loading of phenyl groups, HPCHs had BET surface areas of 390-771 m(2) g(-1), pore volumes of 0.3-0.59 cm(3) g(-1), and the framework pore sizes in the supermicropore to small mesopore range (1.2-2.6 nm). HPCHs were hydrophobic and acidic.
Resumo:
In an attempt to increase the interface stability of carbon used in Li-ion batteries, a thin conducting polyaniline (PANI) film was fabricated on the surface of carbon by in situ chemical polymerization. The chemical and electrochemical properties of the composite material were characterized using X-ray diffraction, Raman spectroscopy, scanning electron microscope, cyclic voltammetry, and electrochemical impedance spectroscopy. It was confirmed that the PANI film has an obvious effect on the morphology and the electrochemical performance of carbon. The results could be attributed to the electronic and electrochemical activity of the conducting PANI films.
Resumo:
A new coordination polymer [Cd-2(1,10'-phen)(2)(betc)(H2O)](n) (1) (betc = benzene-1,2,4,5-tetracarboxylate, 1,10'-phen = 1,10'-phenanthroline) was hydrothermally synthesized from CdCl2.2.5H(2)O, H(4)betc and 1,10'-phen at 160 degreesC. It was characterized by IR, XPS, TG and single-crystal X-ray diffraction. Compound 1 possesses infinite chair-like chains which construct 3D framework through pi-pi interactions and the hydrogen bond interactions. The fluorescent spectrum study shows that compound 1 exhibits blue fluorescent emission in the solid at room temperature.
Resumo:
In this letter, a simple and versatile approach to micropatterning a metal film, which is evaporated on a Si substrate coated with polymer, is demonstrated by the use of a prepatterned epoxy mold. The polymer interlayer between the metal and the Si substrate is found important for the high quality pattern. When the metal-polymer-Si sandwich structure is heated with the temperature below T-m but above T-g of the polymer, the plastic deformation of the polymer film occurs under sufficiently high pressure applied. It causes the metal to crack locally or weaken along the pattern edges. Further heating while applying a lower pressure results in the formation of an intimate junction between the epoxy stamp and the metal film. Under these conditions the epoxy cures further, ensuring adhesion between the stamp and the film. The lift-off process works because the adhesion between the epoxy and the metal film is stronger than that between the metal film and the polymer. A polymer field effect transistor is fabricated in order to demonstrate potential applications of this micropatterning approach.
Resumo:
The effect of the concentration of 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) as dopant in tris(8-quinolinolato) aluminum (Alq(3)) on the charge carrier transport in Alq(3):DCJTB was investigated by measuring the steady current-voltage characteristics and the transient electroluminescence. The dopant concentration dependence of the current-voltage relationship clearly indicates the carrier trapping by the DCJTB molecule. The DCJTB concentration significantly affects the electron mobility in Alq(3):DCJTB. The mobility has a nontrivial dependence on the doping level. For relatively low doping levels, less than 1%, the electron mobility of Alq(3):DCJTB decreases with the doping level. An increasing mobility is then observed if the dopant concentration is further increased, followed by a decrease for doping levels larger than similar to2%. The change of the electron mobility with the DCJTB concentration in Alq(3) is attributed to the additional energetic disorder due to potential fluctuations caused by the dipole-dipole interaction of random distribution dopant at the relatively low doping concentration, and to the phase separation at the high doping concentration.
Resumo:
By doping a fluorescent dye in the emissive layer, we realized high efficient red organic light-emitting diodes (OLEDs) based on a europium complex. The OLEDs realized by this method showed pure red emission at 612 nm with a full width at half maximum Of 3 nm. The Commission International de L'Eclairage Coordination keeps approximately the same as the emission of pure Eu3+. The maximum brightness and EL efficiency reached 2450 cd/m(2) at 20 V and 9.0 cd/A (6.0 lm/w) at a current density of 0.012 mA/cm(2), respectively. At the brightness of 100 cd/m(2), the current efficiency reached 4.4 cd/A.
Resumo:
We model the electrical behavior of organic light-emitting diodes whose emissive multilayer is formed by blends of an electron transporting material, tris-(8-hydroxyquinoline) aluminum (Alq(3)) and a hole transporting material, N,N-'-diphenyl-N,N-'-bis(1,1(')-biphenyl)-4,4-diamine. The multilayer is composed of layers of different concentration. The Alq(3) concentration gradually decreases from the cathode to the anode. We demonstrate that these graded devices have higher efficiency and operate at lower applied voltages than devices whose emissive layer is made of nominally homogeneous blends. Our results show an important advantage of graded devices, namely, the low values of the recombination rate distribution near the cathode and the anode, so that electrode quenching is expected to be significantly suppressed in these devices.
Resumo:
It is reported for the first time that the Pt/C catalyst can be prepared with a new and simple organic sol method using SnCl2 as the reductant. It was found that the average size of the Pt particles in the Pt/C catalysts could be controlled with controlling the preparation conditions. The effect of the average sizes of the Pt particles in the Pt/C catalysts obtained with this method on the electrocatalytical activity of the oxidation of methanol was investigated.
Resumo:
Bottom-contact organic thin-film transistors (BC OTFTs) based on inorganic/organic double gate insulators were demonstrated. The double gate insulators consisted of tantalum pentoxide (Ta2O5) with high dielectric constant (kappa) as the first gate insulator and octadecyltrichlorosilane (OTS) with low kappa as the second gate insulator. The devices have carrier mobilities larger than 10(-2) cm(2)/V s, on/off current ratio greater than 10(5), and the threshold voltage of -14 V, which is threefold larger field-effect mobility and an order of magnitude larger on/off current ratio than the OTFTs with a Ta2O5 gate insulator. The leakage current was decreased from 2.4x10(-6) to 7.4x10(-8) A due to the introduction of the OTS second dielectric layer. The results demonstrated that using inorganic/organic double insulator as the gate dielectric layer is an effective method to fabricate OTFTs with improved electric characteristics.
Resumo:
Organic thin-film transistors (OTFTs) having source/drain electrodes sandwiched between copper phthalocyanine (CuPc) and cobalt phthalocyanine (CoPc) layers, CuPc/CoPc SC OTFTs, are investigated. Comparing their properties with that of CuPc-based top-contact OTFT, field-effect mobility increases from 0.04 to 0.11 cm(2)/Vs, threshold voltage shifts from -13.8 to -8.9 V, and the current on/off ratio maintains at a level of 10(5). A top-contact OTFT with a layer of CuPc and a layer of CoPc (10%)-CuPc mixture reveals that the combination of CuPc and CoPc enhances charge injection from the source electrode into the active layer and increases the off-state current. The sandwich configuration increases the field-effect mobility, reduce the threshold voltage, and improve the on/off ratio at the same time. Our results indicate that using a double-layer of active organic materials in sandwich configuration is an effective way to improve OTFT performance.
Resumo:
The effects of positive and negative gate-bias stress on organic field-effect transistors (OFET) based on tantalum (Ta)/tantalum pentoxide (Ta2O5)/fluorinated copper phthalocyanine (F16CuPc) structure are investigated as a function of stress time and stress temperature. It is shown that gate-bias stress induces a parallel threshold voltage shift (DeltaV(T)) of OFETs without changes of field-effect mobility mu(EF) and sub-threshold slope (DeltaS). The DeltaV(T) is observed to be logarithmically dependent on time at high gate-bias appropriate to OFET operation. More importantly, the shift is directional, namely, be large shift under positive stress and almost do not move under negative stress. The threshold voltage shift is temperature dependent with activation energy of 0.51 eV We concluded that threshold voltage shift of the OFET with F16CuPc as active layer is due to charge trapping in the insulator in which trapped carriers have redistribution.
Resumo:
The organic/inorganic hybrid Langmuir-Blodgett (LB) films were obtained by the compact organization of poly(1,2-dihydro-2,2,4-trimethyl)quinoline (PQ), octadecylamine (ODA) and rare earth-substituted heteropolymolybdates. They were characterized by surface pressure-area (pi-A) isotherms, absorption spectra, fluorescence spectra, atomic force microscope (AFM) and scanning tunneling microscopy (STM). The atomic force microscope revealed a granular surface texture of nanosized rare earth-substituted heteropolymolybdate. The scanning tunneling microscopy indicated that the hybrid LB films containing rare earth-substituted heteropolymolybdates had the better electrical conductivity than LB film of PQ/ODA.
Resumo:
Three kinds of hybrid organic/inorganic Langmuir-Blodgett films are obtained by the compact organization of poly (1, 2-dihydro-2,2,4-trimethyl)quinoline (abridged as PQ), octadecylamine(abridged as OA) and rare earth-substituted heteropolyanions [abridged as RE(PW11,)(2), RE=Ce-II, Eu-II, Gd-II] using the Langmuir-Blodgett technique. They are characterized by the pi-A isotherms, the absorption spectra, the fluorescence spectra and the atomic force microscope. The scanning tunneling microscopy shows that the conductivity of the hybrid LB films is much better after heteropolyanions having been incorporated in the films.
Resumo:
Novel photochromic inorganic-organic multilayers composed of polyoxometalates and poly(ethylenimine) have been prepared by the layer-by-layer (LbL) self-assembly method. The growth process, composition, surface topography, and photochromic properties of the multilayer films were investigated by UV-visible and Fourier transform infrared spectroscopy, atomic force microscopy, electrospin resonance (ESR), and X-ray photoelectron spectroscopy (XPS). Irradiated with ultraviolet light, the transparent films changed from colorless to blue. Moreover, the blue films showed good reversibility of photochromism, and could recover the colorless state gradually in air, where oxygen plays an important role in the bleaching process. On account of the ESR and XPS results, parts of W6+ in multilayers were reduced to W5+, which exhibited a characteristic blue; a possible photochromic mechanism can be speculated. This work provides basic guideline for the assembly of multilayers with photochromic properties.