582 resultados para INAS QUANTUM DOTS
Resumo:
Glass spherical microcavities containing CdSexS1-x semiconductor quantum dots (QDs) are fabricated. The coupling between the optical emission of embedded CdSexS1-x QDs and spherical cavity modes is realized. When the luminescence of QDs is excited by a laser beam, the strong whispering gallery mode resonance with high Q factors is achieved in the photoluminescence spectra. (C) 2001 American Institute of Physics.
Resumo:
Self-assembled InAs nanostructures on (0 0 1) InP substrate have been grown by molecular beam epitaxy (MBE) and evaluated by transmission electron microscopy (TEM) and photoluminescence (PL). It is found that the morphologies and PL properties of InAs nanostructures depend strongly on the growth condition. For the same buffer layer, elongated InAs quantum wires (QWRs) and no isotropic InAs quantum dots (QDs) can be obtained using different growth conditions. At the same time, for InAs quantum dots, PL spectra also show several emission peaks related to different islands size. Theoretical calculation indicated that there are size quantization effects in InAs islands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The photoluminescence (PL) of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots has been measured at 15 and 80 K under hydrostatic pressure. The lateral size of the dots ranges from 7 to 62 nm. The emissions from the dots with 26, 52 and 62 nm size have a blue shift under pressure, indicating that these quantum dots have the normal type-I structure with lowest conduction band at the Gamma -valley. However, the PL peak of dots with 7 nm diameter moves to lower energy with increasing pressure. It is a typical character for the X-related transition. Then these small dots have a type-II structure with the X-valley as the lowest conduction level. An envelope-function calculation confirms that the Gamma -like exciton transition energy will rise above the X-like transition energy in the In0.55Al0.45As/Al0.5Ga0.5As structure if the dot size is small enough.
Resumo:
Growth interruption was introduced during the growth of GaAs capping layer of self-organized quantum dots. The comparison of two QD lasers with and without growth interruption in their active regions shows that growth interruption leads to lower threshold current, higher characteristic temperature, and weaker temperature dependence of lasing energy.
Resumo:
Self-assembled InAs quantum wires (QWRs) embedded in In0.52Al0.48As, In0.53Ga0.47As, and (In0.52Al0.48As)(n)/(In0.53Ga0.47As)(m)-short-period-lattice matrices on InP(001) were fabricated with molecular beam epitaxy (MBE). These QWR lines are along [110], x 4 direction in the 2 x 4 reconstructed (001) surface as revealed with reflection high-energy electron diffraction (RHEED). Alignment of quantum wires in different layers in the InAs/spacer multilayer structures depends on the composition of spacer layers. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of InP substrate orientations on self-assembled InAs quantum dots (QDs) have been investigated by molecular beam epitaxy (MBE). A comparison between atomic force microscopy (AFM) and photoluminescence (PL) spectra shows that a high density of smaller InAs islands can be obtained by using such high index substrates. On the other hand, by introducing a lattice-matched underlying In0.52Al0.24Ga0.24As layer, the InAs QDs can be much more uniform in size and have a great improvement in PL properties. More importantly, 1.55-mu m luminescence at room temperature (RT) can be realized in InAs QDs deposited on (001) InP substrate with underlying In0.52Al0.24Ga0.24As layer. (C) 2000 Elsevier Science B.V. All rights reserved.
Influence of substrate orientation on In0.5Ga0.5As/GaAs quantum dots grown by molecular beam epitaxy
Resumo:
In this paper, In0.5Ga0.5As quantum dots are fabricated on GaAs (100) and (n11)A/B (n = 3, 5) substrates by molecular beam epitaxy. Atomic force microscopy shows that the quantum dots on each oriented substrate are different in size, shape and distribution. In addition, photoluminescence spectra from these quantum dots are different in emission peak position, line width and integrated intensity. Auger electron spectra demonstrate that In concentration is larger near the surface than inside quantum dots, suggesting the occurrence of surface segregation effect during the growth of InGaAs dots. The surface segregation effect is found to be related to substrate orientation. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we investigated the self-assembled quantum dots formed on (100) and (N11)B (N = 2, 3, 4, 5) InP substrates by molecular beam epitaxy (MBE). Two kinds of ternary QDs (In0.9Ga0.1As and In0.9Al0.1As QDs) are grown on the above substrates; Transmission electron microscopy (TEM) and photoluminescence (PL) results confirm QDs formation for all samples. The PL spectra reveal obvious differences in integral luminescence, peak position, full-width at half-maximum and peak shape between different oriented surfaces. Highest PL integral intensity is observed from QDs on (411)B surfaces, which shows a potential for improving the optical properties of QDs by using high-index surface. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
By extending the microscopic dipole model on optical-phonon modes as applied in quantum wells and quantum wires, to rectangular quantum dots (QD), optical phonon modes and their accompanying Frohlich potentials in QD are calculated and classified. When the bulk phonon dispersion is ignored, the optical phonon modes in QD can be clearly divided into the confined LO- and TO-bulk-like modes and the extended interface-like modes. Among the interface-like modes, a special attention is given to the corner modes, whose anisotropic behavior is depicted in the long wavelength limit. Based on the numerical results, a set of analytical formula are proposed to approximately describe the bulk-like modes, for which both the optical displacements and Frohlich potentials vanish at the interfaces. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbital coupling (SOC) on the hole states are investigated. It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb interaction of exciton states is also taken into account. In order to identify the exciton states, we use the approximation of eliminating the coupling of Gamma(6)(X, Y) with Gamma(1)(Z) states. The results are found to account for most of the important features of the experimental photoluminescence excitation spectra of Norris ct nl. However, if the interaction between Gamma(6)(X, Y) and Gamma(1)(Z) states is ignored, the optically passive P-x state cannot become the ground hole state for small CdSe quantum dots of radius less than 30 Angstrom. It is suggested that the intrinsic asymmetry of the hexagonal lattice structure and the coupling of Gamma(6)(X,Y) with Gamma(1)(Z) states are important for understanding the "dark exciton" effect.
Resumo:
Self-organized In0.55Al0.45As/Al0.50Ga0.50As quantum dots are grown by the Stranski-Krastanow growth mode using molecular beam epitaxy on the GaAs(311)A substrate. The optical properties of type-II InAlAs/AlGaAs quantum dots have been demonstrated by the excitation power and temperature dependence of photoluminescence spectra. A simple model accounting for the size-dependent band gap of quantum dots is given to qualitatively understand the formation of type-II In0.55Al0.45As/Al0.50Ga0.50As quantum dots driven by the quantum-confinement-induced Gamma --> X transition. The results provide new insights into the band structure of InAlAs/AlGaAs quantum dots. (C) 2000 American Institute of Physics. [S0003-6951(00)00725-7].
Resumo:
We investigated the photoluminescence (PL) of self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots (QDs) grown on (311)A GaAs substrate. The PL peak at 10 K shifts to lower energy by about 30 meV when the excitation power decreases by two orders of magnitude. It has a red-shift under pressure, that is the character of X-like transition. Moreover, its peak energy is smaller than the indirect gap of bulk Al0.5Ga0.5As and In0.55Al0.45As. We then attribute that peak to the type-II transition between electrons in X valley of Al0.5Ga0.5As and heavy holes in In0.55Al0.45As QDs. A new peak appears at the higher energy when temperature is increased above 70 K. It shifts to higher energy with increasing pressure, corresponding to the transition from conduction Gamma band to valence band in QDs. The measurements demonstrate that our In0.55Al0.45As/Al0.5Ga0.5As quantum dots are type-II QDs with X-like conduction-band minimum. To interpret the second X-related peak emerged under pressure, we discuss the X-valley split in QDs briefly. (C) 2000 American Institute of Physics. [S0003-6951(00)04622-2].
Resumo:
Postgrowth rapid thermal annealing was performed on InGaAs/GaAs quantum dots grown by molecular beam epitaxy. The blue shift of the emission peak and the narrowing of the luminescence line width are observed at lower annealing temperature. However, when the annealing temperature is increased to 850 degrees C, the emission line width becomes larger. The TEM image of this sample shows that the surface becomes rough, and some large clusters are formed, which is due to the interdiffusion of In, Ga atoms at the InGaAs/GaAs interface and to the strain relaxation. The material is found to degrade dramatically when the annealing temperature is further increased to 900 degrees C, while emission from quantum dots can still be detected, along with the appearance of the emission from excited state. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The pressure behaviour of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots (QDs) has been studied at 15 K in the pressure range of 0-1.3 GPa. The atomic force microscopy image shows that the QDs have a multi-modal distribution in size. Three emission peaks were observed in the photoluminescence (PL) spectra, corresponding to the different QD families. The measured pressure coefficients are 82, 93 and 98 meV GPa(-1) for QDs with average lateral size of 26, 52 and 62 nm, respectively. The pressure coefficient of small QDs is about 17% smaller than that of bulk In0.55Al0.45As An envelope-function calculation was used to analyse the effect of pressure-induced change of barrier height, effective mass and dot size on the pressure coefficients of QDs. The Gamma-X state mixing was also included in the evaluation of the reduction of the pressure coefficients. The results indicate that both the pressure-induced increase of effective mass and Gamma-X mixing respond to the decrease of pressure coefficients, and the Gamma-X mixing is more important for small dots. The calculated Gamma-X interaction potentials are 15 and 10 meV for QDs with lateral size of 26 and 52 nm, respectively. A type-II alignment for the X conduction band is suggested according to the pressure dependence of the PL intensities. The valence-band offset was then estimated as 0.15 +/- 0.02.