529 resultados para GOLD CATALYST


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large-scale process combined sonication with self-assembly techniques for the preparation of high-density gold nanoparticles supported on a [Ru(bpy)(3)](2+)-doped silica/Fe3O4 nanocomposite (GNRSF) is provided. The obtained hybrid nanomaterials containing Fe3O4 spheres have high saturation magnetization, which leads to their effective immobilization on the surface of an ITO electrode through simple manipulation by an external magnetic field (without the need of a special immobilization apparatus). Furthermore, this hybrid nanomaterial film exhibits a good and very stable electrochemiluminescence (ECL) behavior, which gives a linear response for tripropylamine (TPA) concentrations between 5 mu m and 0.21 mM, with a detection limit in the micromolar range. The sensitivity of this ECL sensor can be easily controlled by the amount of [Ru(bpy)(3)](2+) immobilized on the hybrid nanomaterials (that is, varying the amount of [Ru(bpy)(3)](2+) during GNRSF synthesis).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple approach combining sonication and sol-gel chemistry was employed to synthesize silica coated carbon nanotube (CNTs) coaxial nanocables. It was found that a homogeneous silica layer can be coated on the surface of the CNTs. This method is simple, rapid, and reproducible. Furthermore, gold nanoparticle supported coaxial nanocables were facilely obtained using amino-functionalized silica as the interlinker. Furthermore, to reduce the cost of Pt in fuel cells, designing a Pt shell on the surface of a noble metal such as gold or silver is necessary. High-density gold/platinum hybrid nanoparticles were located on the surface of I-D coaxial nanocables with high surface-to-volume ratios. It was found that this hybrid nanomaterial exhibits a high electrocatalytic activity for enhancing oxygen reduction (low overpotential associated with the oxygen reduction reaction and almost four-electron electroreduction of dioxygen to water).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have explored a simple and new strategy to obtain quasimonodisperse Au/Pt hybrid nanoparticles (NPS) with urchinlike morphology and controlled size and Pt shell thickness. Through changing the molar ratios of Au to Pt, the Pt shell thickness of urchinlike Au/Pt hybrid NPs could be easily controlled; through changing the size of Au NPs (the size was easily controlled from similar to 3 to similar to 70 nm via simple heating of HAuCl4-citrate aqueous solution), the size of urchinlike Au/Pt hybrid NPs could be facilely dominated. It should be noted that heating the solution (100 degrees C) was very necessary for obtaining three-dimensional (3D) urchinlike nanostructures while H2PtCl6 was added to gold NPs aqueous solution in the presence of reductant (ascorbic acid). The electrocatalytic oxygen reduction reaction (ORR, a reaction greatly pursued by scientists in view of its important application in fuel cells) and the electron-transfer reaction between hexacyanoferrate(III) ions and thiosulfate ions of urchinlike Au/Pt hybrid NPs were investigated. It is found that the as-prepared urchinlike Au/Pt hybrid NPs exhibited higher catalytic activities than that of similar to Pt NPs with similar size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a new fluorescent detection method for cysteine based on one-step prepared fluorescent conjugated polymer-stabilized gold nanoparticles. The as-prepared fluorescent conjugated polymer-stabilized gold nanoparticles fluoresce weakly due to the fluorescence resonance energy transfer between the fluorophore and the gold nanoparticles. Upon the addition of cysteine, a thiol-containing amino acid, the fluorescence of the colloidal solution increases significantly, indicating that cysteine can modulate the energy transfer between fluorophore and gold. This phenomenon then allows for sensitive detection of cysteine with a limit of detection (LOD) of 25 nM. The linear range of determination of cysteine is from 5 x 10(-8) to 4 x 10(-6) M. None of the other amino acids found in proteins interferes with the determination. Moreover, due to the excellent protecting ability of the fluorescent conjugated polymers, the synthesis of metal nanoparticles and modifying with fluorophores can be accomplished within one step, which makes our method much simpler than conventional methods. We also expect that it will be possible to detect other biologically important analytes based on the fluorescent conjugated polymer-stabilized metal nanoparticles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depending on their size, shape. degree of aggregation and nature of the protecting organic shells on their surface, gold nanoparticles (AuNPs) can appear red, blue and other colors and emit bright resonance light scattering of various wavelengths. Because of this unique optical property. AuNPs have been extensively explored as probes for sensing/imaging a wide range of analytes/targets, such as heavy metallic cations, nucleic acids, proteins, cells, etc. Since their initial discovery, novel synthetic methods have led to precise control over particle size, shape and stability, thus allowing the modification of a wide variety of ligands on the AuNP surfaces to meet different experimental conditions. This review discusses the synthesis and applications of functionalized AuNPs in chemical sensing and imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a microarray-based surface-enhanced Raman spectroscopic (SERS) assay for detection of kinase functionality and inhibition has been reported. Biotinylated anti-phosphoserinen antibodies mark the phosphorylation and inhibition events and gold nanoparticles are attached to the antibodies by standard avidin-biotin chemistry, followed by silver deposition for SERS signal enhancement. The avidin conjugated fluorescein is used as SERS probe. The alpha-catalytic subunit of cyclic adenosine 5'-monophosphate (cAMP) dependent protein kinase (PKA), its well known substrate, kemptide, and three inhibitors, H89, HA1077, and KN62 have been chosen here to establish the SERS assay. As expected, highly selective inhibition of PKA is demonstrated with the inhibitor H89 and the inhibition assay enable to detect kinase inhibition as well as derive IC50 (half maximal inhibitory concentration) plots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study. lectin-conjugated gold nanoparticles (GNPs) were prepared by standard biotin-streptavidin chemistry. The lectin-conjugated GNPs call be used as ail indicator for studying the interaction of lectin with glycosyl complex on living cellular Surfaces due to the high affinity of the lectin with saccharides. The interactions of two well-known lectins (Ricinus communis agglutinin and concanavalin A) and three different cell lines (HeLa, 293, and 293T) were selected here to establish this assay. Highly binding affinity of R. communis agglutinin with cells was demonstrated by conventional microscopic and UV-visible spectroscopic Studies. In addition, the binding process can be inhibited by galactose, giving further proof of the binding mechanism. (c) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-walled carbon nanotubes (SWNTs) can selectively induce human telomeric i-motif DNA formation at pH 7.0. Based on this property, we design a DNA nanomachine induced by SWNTs on gold surface. The motor DNA is human telomeric G-quadruplex DNA. The reversible hybridization between the motor DNA and its complementary human telomeric i-motif DNA can be modulated by SWNTs without changing solution pH. Up to now, to our knowledge, there is no report to show that a DNA nanomachine is induced by SWNTs or a DNA nanomachine can detect i-motif formation at pH 7.0. Our work may provide a new concept for designing an SWNT-induced DNA nanomachine and for the detection of i-motif DNA structure at pH 7.0. DNA hybridization, conformational transition and i-motif formation have been characterized on surface or in solution by fluorescence confocal microscopy, circular dichroism, DNA melting and gel electrophoresis. The folding and unfolding kinetics of the DNA nanomachine on gold surface were studied by Fourier transform-surface plasmon resonance (FT-SPR). All these results indicate that SWNTs can induce the DNA nanomachine to work efficiently and reversibly.