315 resultados para Ultrathin film
Resumo:
The deformation mechanism of a styrene/n-butyl acrylate copolymer latex film subjected to uniaxial tensile stress was studied by small-angle X-ray scattering. The influence of annealing at 23, 60, 80, and 100 degrees C for 4 h on microscopic deformation processes was elucidated. It was demonstrated that the microscopic deformation mechanism of the latex films transformed gradually from nonaffine deformation behavior to affine deformation behavior with increasing annealing temperature.
Resumo:
Infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared light-emitting diodes possess potential applications in optical communication and safety detection. in this paper, we fabricated near-infrared polymer light-emitting diode employing a commercial near-infrared (NIR) organic dye as an emissive dopant dispersed within poly(N-vinylcarbazole) (PVK) by spin-casting method. The used device structure was indium tin oxide/3,4-polyethylene-dioxythiophene-polystyrene sulfonate/PVK: NIR dye/Al.
Resumo:
Copper phthalocyanine organic thin-film transistors (OTFTs) were fabricated with top-gate geometry and the effects of different gate dielectrics on the transport proper-ties in OTFTs were studied. The mobility was found to be gate voltage dependent and the results showed that besides the charge density in the accumulation layer, the energetic disorder induced by gate dielectrics played an important role in determining the field-effect mobility in OTFTs.
Resumo:
An organic integrated pixel with organic light-emitting diodes (OLEDs) driven by organic thin film transistors (OTFTs) is fabricated by a greatly simplified processing. The OTFTs are based on copper phthalocyanine as the active medium and fabricated on indium-tin-oxide (ITO) glass with top-gate structure, thus an organic integrated pixel is easily made by integrating OLED with OTFT. The OTFTs show field-effect mobility of 0.4 cm(2) /Vs and on/off ratio of 10(3) order. The OLED is driven well and emits the brightness as large as 2100cd/m(2) at a current density of 14.6 mu A/cm(2) at -19.7 V gate voltage. This simple device structure is promising in the future large-area flexible OLED displays.
Resumo:
We systematically investigated the weak epitaxy growth (WEG) behavior of a series of planar phthalocyanine compounds (MPc), i.e., metal-free phthalocyanine (H2PC), nickel phthalocyanine (NiPc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), iron phthalocyanine (FePc); cobalt phthalocyanine (CoPc), grown on a p-sexiphenyl (p-6P) monolayer film by selected area electron diffraction (SAED) and atomic force microscopy (AFM). Two types of epitaxial relations, named as incommensurate epitaxy and commensurate epitaxy, were identified between phthalocyanine compounds and the substrate of the p-6P film.
Resumo:
A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemistry of glucose oxidase in the film was observed, with linear glucose response up to 12 mM. The PFIL-stabilized gold nanoparticles had a diameter of 2.4 +/- 0.8 nm and exhibited favorable stability (stored even over one month with invisible change in UV-vis spectroscopic measurements).
Resumo:
A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films.
Resumo:
Polyelectrolyte-functionalized ionic liquid (PFIL) and Prussian blue (PB) nanoparticles were used to fabricate ultrathin films on the ITO substrate through electrostatic layer-by-layer assembly method. Multilayer growth was examined by UV-vis spectroscopy and cyclic voltammetry. The resulting ITO/(PFIL/PB)n electrode showed two couples of well-defined redox peaks and good electrocatalytical activity towards the reduction of hydrogen peroxide.
Resumo:
The morphology transition of polystyrene-block-poly(butadiene)-block-poly(2-vinylpyridine) (SBV) triblock thin film induced in benzene vapor showing weak selectivity for PS is investigated. The order-order transitions (OOT) in the sequence of core-shell cylinders (C), sphere in 'diblock gyroid' (sdG), sphere in lamella (sL) and sphere (S) are observed. The projection along (111) direction in Gyroid phase (sdG(111)) is found to epitaxially grow from C(001) in the film.
Resumo:
Very low hysteresis vanadyl-phthalocyanine/para-sexiphenyl thin-film transistors (TFTs) have been fabricated using benzocyclobutenone (BCBO) derivatives/tantalum pentoxide (Ta2O5)/BCBO triple gate dielectrics. The field effect mobility, on/off current ratio and threshold voltage of organic TFTs are 0.45 cm(2) V-1 s(-1), 3.5 x 10(4) and -6.8 V, respectively. To clarify the mechanism of hysteresis, devices with different dielectrics have been studied. It is found that the bottom BCBO derivatives (contact with a gate electrode) block the electron injection from a gate electrode to dielectrics.
Resumo:
Organic thin-film transistors (OTFTs) using high dielectric constant material tantalum pentoxide (Ta2O5) and benzocyclobutenone (BCBO) derivatives as double-layer insulator were fabricated. Three metals with different work function, including Al (4.3 eV), Cr (4.5 eV) and Au (5.1 eV), were employed as gate electrodes to study the correlation between work function of gate metals and hysteresis characteristics of OTFTs. The devices with low work function metal Al or Cr as gate electrode exhibited high hysteresis (about 2.5 V threshold voltage shift). However, low hysteresis (about 0.7 V threshold voltage shift) OTFTs were attained based on high work function metal Au as gate electrode.
Resumo:
Weak epitaxy growth (WEG) behavior and mechanism of copper hexadecafluorophthalocyanine (F16CuPc) on p-sexiphenyl (p-6P) monolayer film were investigated by atomic force microscopy (AFM), selected area electron diffraction (SEAD), and wide-angle X-ray diffraction (WAXD). High-quality F16CuPc films with high order, large size, and molecular-level smoothness were obtained successfully by WEG method. It was identified that there exists incommensurate epitaxial relation between highly oriented F16CuPc and p-6P films. The geometrical channels of p-6P monolayer surface induce the nucleation and growth of F16CuPc molecules.
Resumo:
Tetraoctyl-substituted vanadyl phthalocyanine (OVPc4C8) as a new NIR-absorbing discotic liquid crystalline material can form highly ordered thin films with edge-on alignment of the molecules and molecular packing mode identical to that in the phase II of OVPc for solution processed OTFTs with mobility up to 0.017 cm(2) V-1 s(-1).
Resumo:
Films obtained via drying a polymeric latex dispersion are normally colloidal crystalline where latex particles are packed into a face centered cubic (fcc) structure. Different from conventional atomic crystallites or hard sphere colloidal crystallites, the crystalline structure of these films is normally deformable due to the low glass transition temperature of the latex particles. Upon tensile deformation, depending on the drawing direction with respect to the normal of specific crystallographic plane, one observes different crystalline structural changes. Three typical situations where crystallographic c-axis, body diagonal or face diagonal of the fcc structure of the colloidal crystallites being parallel to the stretching direction were investigated.
Resumo:
Thin poly(3-butylthiophene) (P3BT) film composed of aligned lamellae attached to the edge of the original film has been achieved via a controlled solvent vapor treatment (C-SVT) method. The polarized optical microscopy operated at both single-polarization and cross-polarization modes has been used to investigate the alignment of the fiber-like lamellae. A numerical simulation method is used to quantitatively calculate angle distributions of the lamellae deviated from the film growth direction. Prepatterned P3BT film edge acts as nuclei which densely initialize subsequent crystal growth by exhausting the materials transported from the partially dissolved film. The growth of new film upon crystallization is actually a self-healing process where the two-dimensional geometric confinement is mainly responsible for this parallel alignment of P3BT crystals. The solvent vapor pressure should be carefully chosen so as to induce crystal growth but avoid liquid instability which will destroy the continuity of the film.