442 resultados para Friedel-Crafts alkylation reaction
Resumo:
The reaction of buckministerfullerene (C-60) with tri-n-blltyltin hydride(n-Bu(3)SnH) in toluene solution has been investigated. According to mass spectrometry analysis, the products of above reaction are C-60(BuH)(n)(n = 1 similar to 3) and Bu(x)Sn(y)H(x) (x = 3 similar to 8, y = 1 similar to 4,approximate to = 0 similar to 3). The reaction maybe provide a new method for the synthesis of alkylated fullerene derivatives. Where C-60 also takes a role of a catalysis of organtic-tin polymerization. The radical reaction mechanism has been discussed.
Resumo:
The cyclization process of a new organosulfur reaction was studied by the MNDO (UHF) method. The first reaction path was assumed to be via the organosulfur radical intermediate, the second via the ionic (cationic and anionic) intermediates. The dehydroxylation process was assumed to occur with the synergistic cyclization. The results obtained indicate that the potential energy barrier of the first reaction path was about 102 kcal mol(-1), and although the formation of the ionic intermediate is comparatively difficult, the potential energy barrier of the second path is comparable to the first. The sequential reaction path via the radical intermediate, i.e. first cyclization, then dehydroxylation, was investigated for comparison. The cyclization reaction was found to be the thermodynamically favored process, while the ensuing dehydroxylation process was found to have a potential energy barrier of about 62 kcal mol(-1).
Resumo:
The promoter effect of halogen anions for heterogeneous electron transfer between cytochrome c and a gold electrode was studied. It was found that the order of the promoter ability of halogen anions is I- > Br- > Cl- > F-. In addition, factors which can affect the promoter effect were discussed.
Resumo:
The complex behavior of bilirubin (BR) with beta-CD (cyclodextrin) and gamma-CD in aqueous and dimethylformamide (DMF) solution was investigated by absorption spectroscopy and cyclic voltammetry, respectively. The data shows that the complexation mechanis
Resumo:
The redox conversion of heme-containing protein horseradish peroxidase (HRP), which has a molar mass of 40,000, was studied. The conversion was obtained at an electrochemical polymerized o-phenylenediamine (PPD) film-modified platinum electrode. Optical c
Resumo:
The electrochemical reactions of cytochrome c were studied at a thiophene-modified gold electrode. It was demonstrated that thiophene is an effective promoter, although there is only one functional group in the molecule. Based on this result, the mechanis
Resumo:
Oxochromium (V) tetraphenylporphyrin complexes, O = Cr (V) TPP (Cl) PhI. O = Cr-(V) TPP (N3) PhI and O = Cr (V)TPP (p-CH3OC6H4O)1/2PhI were isolated from the reaction of Cr (III) TPP (Cl). Cr (III) TPP (N3) Py or Cr (III) TPP (p-CH3OC6H4O) THF with iodosy
Resumo:
A new type of macro-micro-macro triple electrode has been fabricated, the steady-state currents of solution redox species have been observed at an ultramicroband electrode by linear potential scan voltammetry, and generation/collection experiments have al
Resumo:
[Si(W2O7)(6)](8-) pillared LDH structure hydroxides were synthesized by the method of restructuring of the thermally decomposed hydrotalcite-like compounds for Zn-Al and Mg-Al oxide systems. [P(W2O7)(6)](8-) pillared Ni-Al LDH structure hydroxide was synt
Resumo:
[Cp3Yb] reacts with HOR (Cp = C5H5; R = CH2CH=CH2, CH2CH2Me) in thf (thf = tetrahydrofuran)at room temperature to give complexes [{Cp2Yb(mu-OR)}2], which are dehydrogenated to yield the new complex [{Cp2Yb(mu-OCH=C=CH2)}2] in refluxing thf solution; the X-ray crystal structure shows that the new complex is dimeric with oxygen atoms as bridging groups.
Resumo:
The reactions of [Cp2Mo2(CO)4] (1) with 2,2'-dipyridyl disulphide (C5H4NS-)2, 8,8'-diquinolyl disulphide (C9H6NS-)2 and tetramethyl thiuram disulphide (Me2NC(S)S-)2 in toluene solution resulted in the cleavage of the Mo-Mo triple bond to yield molybdenum complexes [CpMo(CO)2(C5H4NS)] (2), [CpMo(CO)2(C9H6NS)] (3) and [CpMo(CO)2(S2CNMe2)] (4), respectively. The molecular structures of 2, 3 . O=PPh3 and 4 were determined by X-ray diffraction studies. Crystals of 2 are monoclinic, space group P2(1)/n, with Z = 4, in a unit cell of dimensions a = 6.448(1), b = 12.616(2), c = 14.772(2) angstrom, beta = 92.85(1)-degrees. The structure was refined to R = 0.028 and R(w) = 0.039 for 1357 observed reflections. Crystals of 3 . O=PPh3 are triclinic, space group P1BAR, with Z = 2, in a unit cell of dimensions a = 11.351(3), b = 13.409(3), c = 9.895(2) angstrom, alpha = 94.59(2), beta = 90.35(2), gamma = 78.07(2)-degrees. The structure was refined to R = 0.033 and R(w) = 0.037 for 3260 observed reflections. Crystals of 4 are monoclinic, space group P2(1)/a and Z = 4 with a = 12.468(5), b = 7.637(2), c = 13.135(4) angstrom, beta = 96.62(3). The structure was refined to R = 0.032 and R(w) = 0.042 for 1698 observed reflections. Each of complexes 2-4 contains a cyclopentadienyl ligand, a cis pair of carbonyls and a chelate ligand (S,N donor or S,S donor). All the compounds have distorted square-pyramid structures.
Resumo:
The title complex was synthesized and characterized by H-1, C-13, Sn-119 NMR and IR spectra. A single crystal X-ray diffraction study confirmed its molecular structure and revealed that 3,4,5-trimethoxy-benzoyl salicylahydrazone was a tridentate and approximately planar ligand. The complex crystallizes in the triclinic space group P1BAR with a = 9.208(3), b = 12.536(2), c = 12.187(4) angstrom, alpha = 113.12(2), beta = 90.58(2), gamma = 81.42(2), V = 1277.5(6) angstrom, Z = 2. The structure was refined to R = 0.033 and R(w) = 0.041 for 3944 observed independent reflections. The tin atom has a distorted trigonal bipyramidal coordination. The Sn-C bond lengths are 2.129(5) and 2.113(5) angstrom (av. 2.121(5) angstrom), the C-Sn-C angle is 123.3(2); the bond length between the tin atom and the chelating nitrogen is 2.173(3) angstrom. Two chain carbon atoms and the chelating nitrogen atom occupy the basal plane. The skeleton of two erect oxygen atoms and the tin atom is bent (O-Sn-O angle = 153.5(1)). In the complex, the ligand exists in the enol-form.