311 resultados para Screen printed carbon electrode (SPCE)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capillary electrophoresis (CE)/electrochemical detection (EC) for the simultaneous determination of hydrazine and isoniazid has been developed. The electrochemical method uses a novel modified electrode dispersed with ultrafine platinum particles on the surface of a 30 mu m carbon fiber microelectrode. The unique characteristic of the Pt-particles modified carbon fiber microelectrode is its excellent stability. The current measurement for hydrazine is more sensitive than that of isoniazid. Selective determination of trace amount of free hydrazine in isoniazid and its formulation can be achieved at applied potential of 0.5 V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on scanning tunnelling microscopy and electrochemical measurements, orientation and electrocatalytic function of riboflavin adsorbed on carbon substrates have been described for the first time. Scanning tunnelling micrographs show clearly that tip induction may result in an orientation change of the adsorbed riboflavin molecule on highly oriented pyrolytic graphite from the initially vertical orientation to the stable flat form. The adsorbed riboflavin as an effective mediator can accelerate the reduction of dioxygen which accepts two electrons from the reduced riboflavin to generate hydrogen peroxide. The rate constants of the electrocatalytic reaction in various pH solutions were determined using a rotating disc electrode modified with riboflavin. The pH effect and possible catalytic mechanism are discussed in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ex situ and in situ STM characterization of the electrode materials, including HOPG, GC, Au, Pt and other electrodes, is briefly surveyed and critically evaluated. The relationship between the electrode activity and surface microtopography is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The voltammetric behavior of cytochrome c entrapped in hydrogel membranes at paraffin wax-impregnated spectroscopic graphite electrodes (WISGE) was studied in this paper. A pair of well-defined peaks appeared at +70 mV (vs. Ag/AgCl). Beside these two peaks, another pair of peaks emerged at around +225 mV. Further investigations suggested that at least three states of cytochrome c existed in the membranes due to the special structure of the hydrogel. The native conformation of cytochrome c molecules was stabilized by the hydrophilic environment that was formed by the hydroxyl structure of the membranes and facilitated the cytochrome c electron transfer reaction at +70 mV. The molecules directly adsorbed on the surface of the graphite electrode were responsible for the redox peaks at around +225 mV. Whether the adsorption peaks were detectable or not was related to the thickness of membranes and the pre-retaining time before the formation of membranes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel modified electrode dispersed with ultrafine platinum particles on the surface of a 30-mu m carbon fibre microelectrode was investigated as an amperometric detector in capillary zone electrophoresis (CEEC) for determining hydrazines. The unique cha

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dicyanobis(1,10-phenanthroline)iron(II)-modified glassy carbon electrodes were shown to exhibit an electrocatalytic response for the oxidation of acetaminophen with a decrease of 100 mV in the potential required. It can also inhibit the oxidation of ascor

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrooxidation of ascorbic acid (AA) at the bis(4-pyridyl)disulfide (PySSPy) modified gold electrode was studied. The results showed that the oxidation process was pH-dependent. It was mainly due to the static interaction between AA and the modified

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The anodic oxidation kinetics of hydrazine on glassy carbon electrodes in acetonitrile were examined by cyclic voltammetry, a rotating ring-disc electrode technique and chronoamperometry. The experimental results of the rotating ring-disc electrode prove that hydrazine is oxidized to HN=NH, which cannot be oxidized further in acetonitrile. Hydrazine molecules are adsorbed on the electrode surface. One-third of the adsorbed hydrazine molecules are oxidized to HN=NH and the other two thirds act as proton acceptors. A possible mechanism of hydrazine oxidation is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel type of electrochemical detector based on a polyaniline-dispersed mercury-coated glassy carbon chemically modified electrode was investigated for the detection of monochloramine and dichloramine. A polyaniline dispersed-mercury modified electrode, which was prepared by coating polyaniline on a thin mercury film electrode using fast-sweep voltammetry, was developed. The selectivity could be altered using various counter ions incorporated into the polymer. The results indicated that the use of a conducting polymer-based electrochemical sensor for the selective determination of chloramine is a feasible approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemically modified electrodes (CMEs) prepared by the dispersion of metal oxide particles on a glassy carbon (GC) substrate greatly enhance the voltammetric response and amperometric detection of local anesthetics following liquid chromatography (LC). The enhancement is more pronounced with the GC electrodes dispersed by the metal oxides of higher oxidation states (+3, +4) and for the species exhibiting relatively slow electrode kinetics under given conditions. With an applied potential of 1.2 V (vs. SCE), LC amperometric detection of the analytes at the alpha-alumina modified GC surface gives detection limits 2-5 times lower than those obtained at the bare electrode. The metal oxide-dispersed electrodes display significant improvement in sensitivity, and selectivity and indicate excellent preparation reproducibility and performance stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isopolymolybdic anion-polyaniline film modified carbon fiber (CF) microelectrode with high stability and electroactivity in aqueous acid solution has been successfully prepared by cycling the potential between -0.15 V and +0.85 V vs. sce at 100 mV s-1 or applying constant potential (+0.85 V) for electropolymerization in a 0.5 M H2SO4 solution containing 5.0 x 10(-2) M aniline and 5.0 x 10(-3) M H4Mo8O26. The electrochemical behaviour of the isopolymolybdic anion entrapped in the polyaniline film is strongly influenced by the sweep-potential range besides the acidity of electrolyte solution. In some acidic electrolyte solution (eg 0.5 M H2SO4), the change of the sweep-potential range causes the structure alternation of the isopolymolybdic anion and resulting in a new electrode process. The cyclic voltammogram of Mo8O264- in 0.5 M H2SO4 solution exhibits three two-electron reversible waves between +0.70 and -0.20 V. However, when the potential sweeps to the lower-limit of -0.3 V, where the fourth four-electron cathodic wave appears, the redoxidation process of the reduction product of Mo8O264- becomes relatively complicated. The 10-electron reduction product seems to change into other isopolyanion (this unknown structure isopolyanions are simply called [Mo-O]), which can be reoxidized to Mo8O264- by five successive two-electron oxidation steps from -0.30 to +0.70 V. However, when the lower-limit of the cycling potential is maintained at -0.30 V and the upper-limit reduces to +0.40 V from +0.70 V, the [Mo-O] in the film exhibits four two-electron reversible waves. We have presented a novel explanation about its electrode reaction mechanism on the basis of our experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical behaviour of hexacyanoferrate(II) has been studied by using a bis(4-pyridyl)disulfide modified gold electrode. On the protonated electrode surface, hexacyanoferrate(II) can transfer an electron reversibly but no apparent adsorption was detected. On the deprotonated electrode surface, electron transfer by hexacyanoferrate(II) was more difficult. The electrochemical reversibility varied with the pH of the solution. Relationships between the currents or the standard heterogeneous rate constants and pH were derived.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a carbon fibre (CF) microelectrode modified with the 2:18-molybdodiphosphate anion by simple adsorption is described and its electrochemical behaviour is reported. The 2:18-molybdodiphosphate anion (alpha-P2Mo18O626-), which is a Dawson structure, undergoes five successive multielectron reductions in acidic solution. The first three redox waves correspond to the two-electron process, and the last two waves are four-electron and six-electron processes respectively. On the basis of the experimental results it is shown that the electrode process of alpha-P2Mo18O626- on the CF electrode in acidic solution is simultaneously controlled by the diffusion and adsorption of alpha-P2Mo18O626- anions. When the concentration of the alpha-P2Mo18O626- in the solution is reduced, the electrode process mainly exhibits non-diffusion-controlled behaviour, and the diffusion-limited process takes over as the concentration of alpha-P2Mo18O626- becomes higher. The CF electrode modified with a thin film of alpha-P2Mo18O626- exhibits very good stability and redox behaviour in aqueous acidic solution. The alpha-P2Mo18O626- is reduced to heteropoly blue, with an accompanying protonation process. The addition of more than six electrons to the alpha-P2Mo18O626- anion in an aqueous solution does not result in its decomposition. The result obtained is not the same as that reported previously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the electrochemical properties of isopolymolybdic anion thin film modified carbon fibre (CF) microelectrode prepared by simple dip coating have been described. The modified electrode shows three couples of surface redox waves between + 0.70 and - 0.1 V vs. sce in 2 M H2SO4 solution with good stability and reversibility. The pH of solution has a marked effect on the electrochemical behaviour and stability of the film, the stronger the acidity of electrolyte solution is, the better the stability and reversibility of isopolymolybdic anion film CF microelectrode will be. The scanning potential range strongly influences on the electrochemical behaviour of the film. The isopolymolybdic anion film prepared by the dip coating resulting a monolayer with estimated surface concentration (F) 2.8 x 10(-11) mol cm-2. From the half-peak widths and peak areas of the surface redox waves of the film electrode, the first three surface waves are corresponding to two-electron processes. The electron energy spectra show the products by six electrons reduction are a mixture of Mo(VI) and Mo(V) species. The electrochemical reaction of the isopolymolybdic anion monolayer can be expressed as Mo8O264- + mH+ + 2ne half arrow right over half arrow left [HmMo8-2n(VI)Mo2n(V)O26](4,2n-m)-n = 1, 2, 3; m = 2, 5, 7.