338 resultados para Essay-film
Resumo:
A new series of film-forming, low-bandgap chromophores (1a,b and 2a,b) were rationally designed with aid of a computational study., and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron-donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27-0.71 eV, and accordingly absorb at 746-1003 nm and emit at 1035-1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol(-1)) and non-coplanar structure allow these near-infrared (NIR) chromophores to be readily spin-coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]-phenyl-C-61 butyric acid methyl ester leads to a red shift in the absorption on]), for la and 2a. An interesting NIR electrochromism was found for 2a, with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256-318 nm) is also unique for this multidonor-acceptor type of chromophore.
Resumo:
A new biocompatible film based on chitosan and poly(L-glutamic acid) (CS/PGA), created by alternate deposition of CS and PGA, was investigated. FT-IR spectroscopy, UV-vis spectroscopy and QCM were used to analyze the build-up process. The growth of CS and PGA deposition are both exponential to the deposition steps at first. After about 9 (CS/PGA) depositions, the exponential to linear transition takes place. QCM measurements combined with UV-vis spectra revealed the increase in the multilayer film growth at different pH (4.4, 5.0 and 5.5). The build-up of the multilayer stops after a few depositions at pH = 6.5. A muscle myoblast cell (C2C12) assay showed that (CS/PGA)(n) multilayer films obviously promote C2C12 attachment and growth.
Resumo:
Aqueous conducting polyaniline dispersion was prepared employing acidic phosphate ester bearing hydrophilic ethylene glycol segment as dopant, and conducting film with electrical conductivity of 25 S/cm was obtained from the dispersion. Ordered self-assembly lamellar structure with interlamellar distance of 1.2 nm was observed in the film, which consisted of alternating layers of rigid polyaniline chain and flexible phosphate ester side chains, where the phosphate side chain layer was separated by two rigid polyaniline layers. The lamellar structure leading to high conducting film was formed due to the confinement of polyaniline chain by crystallizable phosphate side chain, since the electrical conductivity decreased by four orders of magnitude once the dopant side chain crystalline was destroyed. The crystallizable side chain forced lamellar structure is expected to be a new chance for highly conducting polyaniline.
Resumo:
Counterions present at the surface of polyelectrolyte multilayers (PEMs) were utilized for modulation of surface wettability via ion exchange. The PEM film was dipped in aqueous solutions of different anions, respectively, and the water contact angle of the surface varied from about 10 degrees to 120 degrees, depending on the hydration characteristics of the anion. The ion exchange mechanism was verified by X-ray photoelectron spectroscopy. The process was rapid and reversible. Ionic strength of the polyelectrolyte solution used for preparing the PEMs was found to be crucial to the surface wetting properties and the reversibility and kinetics of the process, and the effects were correlated to the surface density of the excess charge and counterion. This work provides a general, facile and rapid approach of surface property modulation.
Resumo:
Polystyrenc film of about 50 nm in thickness on silicon wafer was obtained by spin-coating in tetrahydrofuran solution.The film exhibits a rough surface as shown by atomic force microscopy images and ellipsometry data.
Resumo:
A series of binary SB blend samples with various overall volume fraction of PS (Phi(PS)) and different discrete distribution of the block length (denoted as d(PS) or d(PB)) were prepared by mixing various asymmetric poly(styrene)-block-poly(butadiene) (SB) block copolymers with a symmetric SB block copolymer. The influences of the external solvent field, composition, and the block length distribution on the morphologies of the blends in the thin films were investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The experimental results revealed that after solvent annealing, the interface of the blend thin films depended mainly on the cooperative effects of the annealing solvent and the inherently interfacial curvature of the blends. Upon exposure to the saturated vapor of cyclohexane, which has preferential affinity for the PB block, a "threshold" of Phi(PS) (approximate 0.635-0.707) was found. Below such threshold, the influence of the annealing solvent played an important role on the interfacial curvature of the blend thin film.
Resumo:
A novel bilayer photoresist insulator is applied in flexible vanadyl-phthalocyanine (VOPc) organic thin-film transistors (OTFTs). The micron-size patterns of this photoresisit insulator can be directly defined only by photolithography without the etching process. Furthermore, these OTFTs exhibit high field-effect mobility (about 0.8 cm(2)/Vs) and current on/off ratio (about 10(6)). In particular, they show rather low hysteresis (< 1 V). The results demonstrate that this bilayer photoresist insulator can be applied in large-area electronics and in the facilitation of patterning insulators.
Resumo:
An approach was reported to synthesize silica hybridized ruthenium bipyridyl complex through amidation reaction by covalent attachment of bis(bipyridyl)-4,4'-dicarboxy-2,2'-bipyridyl-ruthenium to (3-aminopropyl)-triethoxysilane. The hybrid complex then was gelatinized through acid catalytic hydrolysis method and a sol-gel modified indium, tin oxide electrode was prepared via spin coating technique. As prepared indium tin oxide electrode possesses good stability therein with excellent electrochemiluminescence behavior.
Resumo:
The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.
Resumo:
The composite film based on Nafion and hydrophobic room-temperature ionic liquid (RTIL) 1-butyl-3-methyl-imidazolium hexafluorophosphate ([bmim] PF6) was explored. Here, Nafion was used as a binder to form Nafion-ionic liquids composite film and help [bmim] PF6 effectively adhered on glassy carbon (GC) electrode. X-ray photoelectron spectroscopy (XPS), cyclic voltammtery (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize this composite film, showing that the composite film can effectively adhere on the GC electrode surface through Nafion interacting with [bmim] PF6 and GC electrode. Meanwhile, doping [bmim] PF6 in Nafion can also effectively reduce the electron transfer resistance of Nafion. The composite film can be readily used as an immobilization matrix to entrap horseradish peroxidase (HRP). A pair of well-defined redox peaks of HRP was obtained at the HRP/Nafion[bmim] PF6 composite film-modified GC electrode through direct electron transfer between the protein and the underlying electrode. HRP can still retain its biological activity and enhance electrochemical reduction towards O-2 and H2O2. It is expected that this composite film may find more potential applications in biosensors and biocatalysis.
Resumo:
Gold nanoparticles in polyelectrolyte multilayers film can be easily prepared by repeating immersion of a substrate in poly(diallyl dimethylammonium) chloride (PDDA)-AuCl4- complexes solution followed by reduction Au3+ through heating. UV-vis spectroscopy, cyclic voltammetry (CV) and tapping-mode atomic force microscopy (AFM) are used to confirm the successful construction of the polyelectrolyte multilayers film and the formation of gold nanoparticles. The multilayers film shows electrocatalytic activity to dioxygen reduction.